There are exactly 172 connected Q-integral graphs up to 10 vertices
Novi Sad Journal of Mathematics, Tome 37 (2007) no. 2.

Voir la notice de l'article provenant de la source Novi sad journal of mathematics website

@article{NSJOM_2007_37_2a_15,
     author = {Z. Stani\'c},
     title = {There are exactly 172 connected {Q-integral} graphs up to 10 vertices},
     journal = {Novi Sad Journal of Mathematics},
     pages = {193-205},
     publisher = {mathdoc},
     volume = {37},
     number = {2},
     year = {2007},
     url = {http://geodesic.mathdoc.fr/item/NSJOM_2007_37_2a_15/}
}
TY  - JOUR
AU  - Z. Stanić
TI  - There are exactly 172 connected Q-integral graphs up to 10 vertices
JO  - Novi Sad Journal of Mathematics
PY  - 2007
SP  - 193
EP  - 205
VL  - 37
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/NSJOM_2007_37_2a_15/
ID  - NSJOM_2007_37_2a_15
ER  - 
%0 Journal Article
%A Z. Stanić
%T There are exactly 172 connected Q-integral graphs up to 10 vertices
%J Novi Sad Journal of Mathematics
%D 2007
%P 193-205
%V 37
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/NSJOM_2007_37_2a_15/
%F NSJOM_2007_37_2a_15
Z. Stanić. There are exactly 172 connected Q-integral graphs up to 10 vertices. Novi Sad Journal of Mathematics, Tome 37 (2007) no. 2. http://geodesic.mathdoc.fr/item/NSJOM_2007_37_2a_15/