There are exactly 172 connected Q-integral graphs up to 10 vertices
Novi Sad Journal of Mathematics, Tome 37 (2007) no. 2

Voir la notice de l'article provenant de la source Novi sad journal of mathematics website

@article{NSJOM_2007_37_2a_15,
     author = {Z. Stani\'c},
     title = {There are exactly 172 connected {Q-integral} graphs up to 10 vertices},
     journal = {Novi Sad Journal of Mathematics},
     pages = {193-205},
     publisher = {mathdoc},
     volume = {37},
     number = {2},
     year = {2007},
     url = {http://geodesic.mathdoc.fr/item/NSJOM_2007_37_2a_15/}
}
TY  - JOUR
AU  - Z. Stanić
TI  - There are exactly 172 connected Q-integral graphs up to 10 vertices
JO  - Novi Sad Journal of Mathematics
PY  - 2007
SP  - 193
EP  - 205
VL  - 37
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/NSJOM_2007_37_2a_15/
ID  - NSJOM_2007_37_2a_15
ER  - 
%0 Journal Article
%A Z. Stanić
%T There are exactly 172 connected Q-integral graphs up to 10 vertices
%J Novi Sad Journal of Mathematics
%D 2007
%P 193-205
%V 37
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/NSJOM_2007_37_2a_15/
%F NSJOM_2007_37_2a_15
Z. Stanić. There are exactly 172 connected Q-integral graphs up to 10 vertices. Novi Sad Journal of Mathematics, Tome 37 (2007) no. 2. http://geodesic.mathdoc.fr/item/NSJOM_2007_37_2a_15/