Ramanudžanov dokaz Bertranovog postulata
Nastava matematike, LXIII (2018) no. 3-4, p. 70 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

The well-known Bertrand postulate, that for each positive integer $n\ge4$ there exists a prime $p$, greater than $n$ and smaller than $2n-2$, has been proved in several ways. One of the most inspiring ones is Ramanujan's proof form 1919. In the present paper, this proof is being recalled, in a way that can be presented to high school students.
Classification : 97F60 F64
Keywords: Prime numbers, Bertrand postulate, Ramanujan's proof
@article{NM_2018_LXIII_3-4_a1,
     author = {Aleksander Simoni\v{c}},
     title = {Ramanud\v{z}anov dokaz {Bertranovog} postulata},
     journal = {Nastava matematike},
     pages = {70 },
     publisher = {mathdoc},
     volume = {LXIII},
     number = {3-4},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/NM_2018_LXIII_3-4_a1/}
}
TY  - JOUR
AU  - Aleksander Simonič
TI  - Ramanudžanov dokaz Bertranovog postulata
JO  - Nastava matematike
PY  - 2018
SP  - 70 
VL  - LXIII
IS  - 3-4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/NM_2018_LXIII_3-4_a1/
LA  - en
ID  - NM_2018_LXIII_3-4_a1
ER  - 
%0 Journal Article
%A Aleksander Simonič
%T Ramanudžanov dokaz Bertranovog postulata
%J Nastava matematike
%D 2018
%P 70 
%V LXIII
%N 3-4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/NM_2018_LXIII_3-4_a1/
%G en
%F NM_2018_LXIII_3-4_a1
Aleksander Simonič. Ramanudžanov dokaz Bertranovog postulata. Nastava matematike, LXIII (2018) no. 3-4, p. 70 . http://geodesic.mathdoc.fr/item/NM_2018_LXIII_3-4_a1/