Ramanudžanov dokaz Bertranovog postulata
Nastava matematike, LXIII (2018) no. 3-4, p. 70
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
The well-known Bertrand postulate, that for each positive integer $n\ge4$ there exists a prime $p$, greater than $n$ and smaller than $2n-2$, has been proved in several ways. One of the most inspiring ones is Ramanujan's proof form 1919. In the present paper, this proof is being recalled, in a way that can be presented to high school students.
Classification :
97F60 F64
Keywords: Prime numbers, Bertrand postulate, Ramanujan's proof
Keywords: Prime numbers, Bertrand postulate, Ramanujan's proof
@article{NM_2018_LXIII_3-4_a1,
author = {Aleksander Simoni\v{c}},
title = {Ramanud\v{z}anov dokaz {Bertranovog} postulata},
journal = {Nastava matematike},
pages = {70 },
year = {2018},
volume = {LXIII},
number = {3-4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/NM_2018_LXIII_3-4_a1/}
}
Aleksander Simonič. Ramanudžanov dokaz Bertranovog postulata. Nastava matematike, LXIII (2018) no. 3-4, p. 70 . http://geodesic.mathdoc.fr/item/NM_2018_LXIII_3-4_a1/