Stabilization of a Spherical Robot with an Internal Pendulum During Motion on an Oscillating Base
Russian journal of nonlinear dynamics, Tome 20 (2024) no. 5, pp. 845-858.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is concerned with the experimental development of the stabilizing regulator for a spherical pendulum-type robot moving on an oscillating base. Using a mathematical model of the motion of the spherical robot with an internal pendulum mechanism, a regulator stabilizing the lower position of the pendulum is developed. The developed regulator has been tested in practice by means of a real prototype of the spherical robot. The results of real experiments are presented to assess the stabilization of the lower position of the pendulum of the spherical robot during its motion along a straight line on a plane executing longitudinal oscillations, and during the stabilization of the lower position of the pendulum, when the spherical shell remains fixed relative to the plane.
Keywords: spherical robot, stabilization, rolling motion
Mots-clés : vibrations
@article{ND_2024_20_5_a8,
     author = {A. V. Klekovkin and Yu. L. Karavaev and A. V. Nazarov},
     title = {Stabilization of a {Spherical} {Robot} with an {Internal} {Pendulum} {During} {Motion} on an {Oscillating} {Base}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {845--858},
     publisher = {mathdoc},
     volume = {20},
     number = {5},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2024_20_5_a8/}
}
TY  - JOUR
AU  - A. V. Klekovkin
AU  - Yu. L. Karavaev
AU  - A. V. Nazarov
TI  - Stabilization of a Spherical Robot with an Internal Pendulum During Motion on an Oscillating Base
JO  - Russian journal of nonlinear dynamics
PY  - 2024
SP  - 845
EP  - 858
VL  - 20
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2024_20_5_a8/
LA  - en
ID  - ND_2024_20_5_a8
ER  - 
%0 Journal Article
%A A. V. Klekovkin
%A Yu. L. Karavaev
%A A. V. Nazarov
%T Stabilization of a Spherical Robot with an Internal Pendulum During Motion on an Oscillating Base
%J Russian journal of nonlinear dynamics
%D 2024
%P 845-858
%V 20
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2024_20_5_a8/
%G en
%F ND_2024_20_5_a8
A. V. Klekovkin; Yu. L. Karavaev; A. V. Nazarov. Stabilization of a Spherical Robot with an Internal Pendulum During Motion on an Oscillating Base. Russian journal of nonlinear dynamics, Tome 20 (2024) no. 5, pp. 845-858. http://geodesic.mathdoc.fr/item/ND_2024_20_5_a8/

[1] Karavaev, Yu. L., “Spherical Robots: An Up-to-Date Overview of Designs and Features”, Russian J. Nonlinear Dyn., 18:4 (2022), 699–740 | MR

[2] Diouf, A., Belzile, B., Saad, M., and St.-Onge, D., “Spherical Rolling Robots — Design, Modeling, and Control: A Systematic Literature Review”, Rob. Auton. Syst., 175 (2024), Art. 104657, 15 pp. | DOI

[3] Bujňák, M., Pirník, R., Rástočný, K., Janota, A., Nemec, D., Kuchár, P., Tichý, T., and Łukasik, Z., “Spherical Robots for Special Purposes: A Review on Current Possibilities”, Sensors, 22:4 (2022), Art. 1413, 36 pp.

[4] Kilin, A. A. and Pivovarova, E. N., “Stability and Stabilization of Steady Rotations of a Spherical Robot on a Vibrating Base”, Regul. Chaotic. Dyn., 25:6 (2020), 729–752 | DOI | MR | Zbl

[5] Kilin, A. A., Ivanova, T. B., and Pivovarova, E. N., “Stabilization of Steady Rotations of a Spherical Robot on a Vibrating Base Using Feedback”, Regul. Chaotic Dyn., 28:6 (2023), 888–905 | DOI | MR | Zbl

[6] Karavaev, Yu. L. and Kilin, A. A., “The Dynamics of a Spherical Robot of Combined Type by Periodic Control Actions”, Russian J. Nonlinear Dyn., 15:4 (2019), 497–504 | MR | Zbl

[7] Borisov, A. V., Kilin, A. A., Karavaev, Yu. L., and Klekovkin, A. V., “Stabilization of the Motion of a Spherical Robot Using Feedbacks”, Appl. Math. Model., 69 (2019), 583–592 | DOI | MR | Zbl

[8] Melchiorre, M., Colamartino, T., Ferrauto, M., Troise, M., Salamina, L., and Mauro, S., “Design of a Spherical Rover Driven by Pendulum and Control Moment Gyroscope for Planetary Exploration”, Robotics, 13:6 (2024), Art. 87, 24 pp. | DOI

[9] Li, C., Zhu, A., Zheng, C., and Mao, H., “Design and Analysis of a Spherical Robot Based on Reaction Wheel Stabilization”, Proc. of the 19th Internat. Conf. on Ubiquitous Robots (Jeju, South Korea, Jul 2022), 143–148

[10] Kilin, A. A. and Pivovarova, E. N., “Motion Control of the Spherical Robot Rolling on a Vibrating Plane”, Appl. Math. Model., 109 (2022), 492–508 | DOI | MR | Zbl

[11] Urakubo, T., Monno, M., Maekawa, S., and Tamaki, H., “Dynamic Modeling and Controller Design for a Spherical Rolling Robot Equipped with a Gyro”, IEEE Trans. Control Syst. Technol., 24:5 (2016), 1669–1679 | DOI

[12] Wang, Y., Wang, Y., Liu, Y., Guan, X., Tao, H., Zhang, Z., Hao, J., and Li, G., “New Riccati Velocity Controller of the Spherical Robot”, J. Intell. Robot. Syst., 108:3 (2023), Art. 51

[13] Taheri Andani, M., Ramezani, Z., Moazami, S., Cao, J., Arefi, M. M., and Zargarzadeh, H., “Observer-Based Sliding Mode Control for Path Tracking of a Spherical Robot”, Complexity, 2018:1 (2018), Art. 3129398, 15 pp.

[14] Zihao, S., Bin, W., and Ting, Z., “Trajectory Tracking Control of a Spherical Robot Based on Adaptive PID Algorithm”, Proc. of the Chinese Control and Decision Conf. (CCDC, Nanchang, China, Jun 2019), 5171–5175 | MR

[15] Azizi, M. R. and Keighobadi, J., “Robust Sliding Mode Trajectory Tracking Controller for a Nonholonomic Spherical Mobile Robot”, IFAC Proc. Vol., 47:3 (2014), 4541–4546 | DOI

[16] Azizi, M. R. and Keighobadi, J., “Point Stabilization of Nonholonomic Spherical Mobile Robot Using Nonlinear Model Predictive Control”, Robot. Auton. Syst., 98 (2017), 347–359 | DOI

[17] Yu, T., Sun, H., Jia, Q., Zhang, Y., and Zhao, W., “Stabilization and Control of a Spherical Robot on an Inclined Plane”, Res. J. Appl. Sci. Eng. Technology, 5:6 (2013), 2289–2296

[18] Artemova, E. M., Karavaev, Y. L., Mamaev, I. S., Vetchanin, E. V., “Dynamics of a Spherical Robot with Variable Moments of Inertia and a Displaced Center of Mass”, Regular and Chaotic Dynamics, 25:6 (2020), 689–706 | DOI | MR | Zbl

[19] Tafrishi, S. A., Bai, Y., Svinin, M., Esmaeilzadeh, E., and Yamamoto, M., “Inverse Dynamics-Based Motion Control of a Fluid-Actuated Rolling Robot”, Russian J. Nonlinear Dyn., 15:4 (2019), 611–622 | MR | Zbl

[20] Roozegar, M. and Mahjoob, M. J., “Modelling and Control of a Non-Holonomic Pendulum-Driven Spherical Robot Moving on an Inclined Plane: Simulation and Experimental Results”, IET Control Theory Appl., 11:4 (2017), 541–549 | DOI | MR

[21] Ivanova, T. B., Kilin, A. A., Pivovarova, E. N., “Controlled Motion of a Spherical Robot with Feedback. 1”, Journal of Dynamical and Control Systems, 24:3 (2018), 497–510 | DOI | MR | Zbl

[22] Ivanova, T. B., Kilin, A. A., and Pivovarova, E. N., “Controlled Motion of a Spherical Robot with Feedback: 2”, J. Dyn. Control Syst., 25:1 (2019), 1–16 | DOI | MR | Zbl

[23] Tr. Mat. Inst. Steklova, 295 (2016), 174–183 (Russian) | DOI | DOI | MR | Zbl

[24] Bizyaev, I. A., Borisov, A. V., and Mamaev, I. S., “The Dynamics of Nonholonomic Systems Consisting of a Spherical Shell with a Moving Rigid Body Inside”, Regul. Chaotic Dyn., 19:2 (2014), 198–213 | DOI | MR | Zbl

[25] Ivanova, T. B., Karavaev, Yu. L., and Kilin, A. A., “Control of a Pendulum-Actuated Spherical Robot on a Horizontal Plane with Rolling Resistance”, Arch. Appl. Mech., 92:1 (2022), 137–150 | DOI | MR

[26] Karavaev, Yu. L., Kilin, A. A., and Klekovkin, A. V., “The Dynamical Model of the Rolling Friction of Spherical Bodies on a Plane without Slipping”, Nelin. Dinam., 13:4 (2017), 599–609 (Russian) | DOI | MR

[27] Chen, S.-B., Beigi, A., Yousefpour, A., Rajaee, F., Jahanshahi, H., Bekiros, S., Alcaraz, R., and Chu, Y., “Recurrent Neural Network-Based Robust Nonsingular Sliding Mode Control with Input Saturation for a Non-Holonomic Spherical Robot”, IEEE Access, 8 (2020), 188441–188453 | DOI

[28] Cai, Y., Zhan, Q., and Xi, X., “Neural Network Control for the Linear Motion of a Spherical Mobile Robot”, Int. J. Adv. Robot. Syst., 8:4 (2011), 79–87 | DOI

[29] Nor, N. V., “Reinforcement Learning in the Task of Spherical Robot Motion Control”, Russian J. Nonlinear Dyn., 20:2 (2024), 295–310 | MR | Zbl

[30] Tedrake, R., Underactuated Robotics: Algorithms for Walking, Running, Swimming, Flying, and Manipulation: Course Notes for MIT 6.832, , Dec 6 2024 Underactuated Robotics | Zbl

[31] Formalskii, A. M., “Stabilization of Unstable Mechanical Systems”, J. Optim. Theory Appl., 144:2 (2010), 227–253 | DOI | MR | Zbl

[32] Madgwick, S. O. H., “An Efficient Orientation Filter for Inertial and Inertial/Magnetic Sensor Arrays”, Report x-io and University of Bristol (UK), 25 (2010), 113–118