Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2024_20_5_a8, author = {A. V. Klekovkin and Yu. L. Karavaev and A. V. Nazarov}, title = {Stabilization of a {Spherical} {Robot} with an {Internal} {Pendulum} {During} {Motion} on an {Oscillating} {Base}}, journal = {Russian journal of nonlinear dynamics}, pages = {845--858}, publisher = {mathdoc}, volume = {20}, number = {5}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2024_20_5_a8/} }
TY - JOUR AU - A. V. Klekovkin AU - Yu. L. Karavaev AU - A. V. Nazarov TI - Stabilization of a Spherical Robot with an Internal Pendulum During Motion on an Oscillating Base JO - Russian journal of nonlinear dynamics PY - 2024 SP - 845 EP - 858 VL - 20 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2024_20_5_a8/ LA - en ID - ND_2024_20_5_a8 ER -
%0 Journal Article %A A. V. Klekovkin %A Yu. L. Karavaev %A A. V. Nazarov %T Stabilization of a Spherical Robot with an Internal Pendulum During Motion on an Oscillating Base %J Russian journal of nonlinear dynamics %D 2024 %P 845-858 %V 20 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2024_20_5_a8/ %G en %F ND_2024_20_5_a8
A. V. Klekovkin; Yu. L. Karavaev; A. V. Nazarov. Stabilization of a Spherical Robot with an Internal Pendulum During Motion on an Oscillating Base. Russian journal of nonlinear dynamics, Tome 20 (2024) no. 5, pp. 845-858. http://geodesic.mathdoc.fr/item/ND_2024_20_5_a8/
[1] Karavaev, Yu. L., “Spherical Robots: An Up-to-Date Overview of Designs and Features”, Russian J. Nonlinear Dyn., 18:4 (2022), 699–740 | MR
[2] Diouf, A., Belzile, B., Saad, M., and St.-Onge, D., “Spherical Rolling Robots — Design, Modeling, and Control: A Systematic Literature Review”, Rob. Auton. Syst., 175 (2024), Art. 104657, 15 pp. | DOI
[3] Bujňák, M., Pirník, R., Rástočný, K., Janota, A., Nemec, D., Kuchár, P., Tichý, T., and Łukasik, Z., “Spherical Robots for Special Purposes: A Review on Current Possibilities”, Sensors, 22:4 (2022), Art. 1413, 36 pp.
[4] Kilin, A. A. and Pivovarova, E. N., “Stability and Stabilization of Steady Rotations of a Spherical Robot on a Vibrating Base”, Regul. Chaotic. Dyn., 25:6 (2020), 729–752 | DOI | MR | Zbl
[5] Kilin, A. A., Ivanova, T. B., and Pivovarova, E. N., “Stabilization of Steady Rotations of a Spherical Robot on a Vibrating Base Using Feedback”, Regul. Chaotic Dyn., 28:6 (2023), 888–905 | DOI | MR | Zbl
[6] Karavaev, Yu. L. and Kilin, A. A., “The Dynamics of a Spherical Robot of Combined Type by Periodic Control Actions”, Russian J. Nonlinear Dyn., 15:4 (2019), 497–504 | MR | Zbl
[7] Borisov, A. V., Kilin, A. A., Karavaev, Yu. L., and Klekovkin, A. V., “Stabilization of the Motion of a Spherical Robot Using Feedbacks”, Appl. Math. Model., 69 (2019), 583–592 | DOI | MR | Zbl
[8] Melchiorre, M., Colamartino, T., Ferrauto, M., Troise, M., Salamina, L., and Mauro, S., “Design of a Spherical Rover Driven by Pendulum and Control Moment Gyroscope for Planetary Exploration”, Robotics, 13:6 (2024), Art. 87, 24 pp. | DOI
[9] Li, C., Zhu, A., Zheng, C., and Mao, H., “Design and Analysis of a Spherical Robot Based on Reaction Wheel Stabilization”, Proc. of the 19th Internat. Conf. on Ubiquitous Robots (Jeju, South Korea, Jul 2022), 143–148
[10] Kilin, A. A. and Pivovarova, E. N., “Motion Control of the Spherical Robot Rolling on a Vibrating Plane”, Appl. Math. Model., 109 (2022), 492–508 | DOI | MR | Zbl
[11] Urakubo, T., Monno, M., Maekawa, S., and Tamaki, H., “Dynamic Modeling and Controller Design for a Spherical Rolling Robot Equipped with a Gyro”, IEEE Trans. Control Syst. Technol., 24:5 (2016), 1669–1679 | DOI
[12] Wang, Y., Wang, Y., Liu, Y., Guan, X., Tao, H., Zhang, Z., Hao, J., and Li, G., “New Riccati Velocity Controller of the Spherical Robot”, J. Intell. Robot. Syst., 108:3 (2023), Art. 51
[13] Taheri Andani, M., Ramezani, Z., Moazami, S., Cao, J., Arefi, M. M., and Zargarzadeh, H., “Observer-Based Sliding Mode Control for Path Tracking of a Spherical Robot”, Complexity, 2018:1 (2018), Art. 3129398, 15 pp.
[14] Zihao, S., Bin, W., and Ting, Z., “Trajectory Tracking Control of a Spherical Robot Based on Adaptive PID Algorithm”, Proc. of the Chinese Control and Decision Conf. (CCDC, Nanchang, China, Jun 2019), 5171–5175 | MR
[15] Azizi, M. R. and Keighobadi, J., “Robust Sliding Mode Trajectory Tracking Controller for a Nonholonomic Spherical Mobile Robot”, IFAC Proc. Vol., 47:3 (2014), 4541–4546 | DOI
[16] Azizi, M. R. and Keighobadi, J., “Point Stabilization of Nonholonomic Spherical Mobile Robot Using Nonlinear Model Predictive Control”, Robot. Auton. Syst., 98 (2017), 347–359 | DOI
[17] Yu, T., Sun, H., Jia, Q., Zhang, Y., and Zhao, W., “Stabilization and Control of a Spherical Robot on an Inclined Plane”, Res. J. Appl. Sci. Eng. Technology, 5:6 (2013), 2289–2296
[18] Artemova, E. M., Karavaev, Y. L., Mamaev, I. S., Vetchanin, E. V., “Dynamics of a Spherical Robot with Variable Moments of Inertia and a Displaced Center of Mass”, Regular and Chaotic Dynamics, 25:6 (2020), 689–706 | DOI | MR | Zbl
[19] Tafrishi, S. A., Bai, Y., Svinin, M., Esmaeilzadeh, E., and Yamamoto, M., “Inverse Dynamics-Based Motion Control of a Fluid-Actuated Rolling Robot”, Russian J. Nonlinear Dyn., 15:4 (2019), 611–622 | MR | Zbl
[20] Roozegar, M. and Mahjoob, M. J., “Modelling and Control of a Non-Holonomic Pendulum-Driven Spherical Robot Moving on an Inclined Plane: Simulation and Experimental Results”, IET Control Theory Appl., 11:4 (2017), 541–549 | DOI | MR
[21] Ivanova, T. B., Kilin, A. A., Pivovarova, E. N., “Controlled Motion of a Spherical Robot with Feedback. 1”, Journal of Dynamical and Control Systems, 24:3 (2018), 497–510 | DOI | MR | Zbl
[22] Ivanova, T. B., Kilin, A. A., and Pivovarova, E. N., “Controlled Motion of a Spherical Robot with Feedback: 2”, J. Dyn. Control Syst., 25:1 (2019), 1–16 | DOI | MR | Zbl
[23] Tr. Mat. Inst. Steklova, 295 (2016), 174–183 (Russian) | DOI | DOI | MR | Zbl
[24] Bizyaev, I. A., Borisov, A. V., and Mamaev, I. S., “The Dynamics of Nonholonomic Systems Consisting of a Spherical Shell with a Moving Rigid Body Inside”, Regul. Chaotic Dyn., 19:2 (2014), 198–213 | DOI | MR | Zbl
[25] Ivanova, T. B., Karavaev, Yu. L., and Kilin, A. A., “Control of a Pendulum-Actuated Spherical Robot on a Horizontal Plane with Rolling Resistance”, Arch. Appl. Mech., 92:1 (2022), 137–150 | DOI | MR
[26] Karavaev, Yu. L., Kilin, A. A., and Klekovkin, A. V., “The Dynamical Model of the Rolling Friction of Spherical Bodies on a Plane without Slipping”, Nelin. Dinam., 13:4 (2017), 599–609 (Russian) | DOI | MR
[27] Chen, S.-B., Beigi, A., Yousefpour, A., Rajaee, F., Jahanshahi, H., Bekiros, S., Alcaraz, R., and Chu, Y., “Recurrent Neural Network-Based Robust Nonsingular Sliding Mode Control with Input Saturation for a Non-Holonomic Spherical Robot”, IEEE Access, 8 (2020), 188441–188453 | DOI
[28] Cai, Y., Zhan, Q., and Xi, X., “Neural Network Control for the Linear Motion of a Spherical Mobile Robot”, Int. J. Adv. Robot. Syst., 8:4 (2011), 79–87 | DOI
[29] Nor, N. V., “Reinforcement Learning in the Task of Spherical Robot Motion Control”, Russian J. Nonlinear Dyn., 20:2 (2024), 295–310 | MR | Zbl
[30] Tedrake, R., Underactuated Robotics: Algorithms for Walking, Running, Swimming, Flying, and Manipulation: Course Notes for MIT 6.832, , Dec 6 2024 Underactuated Robotics | Zbl
[31] Formalskii, A. M., “Stabilization of Unstable Mechanical Systems”, J. Optim. Theory Appl., 144:2 (2010), 227–253 | DOI | MR | Zbl
[32] Madgwick, S. O. H., “An Efficient Orientation Filter for Inertial and Inertial/Magnetic Sensor Arrays”, Report x-io and University of Bristol (UK), 25 (2010), 113–118