On Motions of a Dynamical System with a Relay Hysteresis
Russian journal of nonlinear dynamics, Tome 20 (2024) no. 4, pp. 565-579.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study an $n$-dimensional system of ordinary differential equations (ODEs) with a relay nonsymmetric hysteresis. Conditions under which the system of ODEs governs a dynamical system are specified. We obtain sufficient conditions for motions of the system to be recurrent or periodic. Also, we consider various configurations for the closed phase trajectories (orbits) of the motions as well as properties of fixed (switching) points on these trajectories. An example for the system of dimension 3 is given to support the obtained results.
Keywords: dynamical system, relay hysteresis, recurrent motion, periodic motion, closed phase trajectory, switching points, point mapping
@article{ND_2024_20_4_a8,
     author = {A. M. Kamachkin and D. K. Potapov and V. V. Yevstafyeva},
     title = {On {Motions} of a {Dynamical} {System} with a {Relay} {Hysteresis}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {565--579},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2024_20_4_a8/}
}
TY  - JOUR
AU  - A. M. Kamachkin
AU  - D. K. Potapov
AU  - V. V. Yevstafyeva
TI  - On Motions of a Dynamical System with a Relay Hysteresis
JO  - Russian journal of nonlinear dynamics
PY  - 2024
SP  - 565
EP  - 579
VL  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2024_20_4_a8/
LA  - en
ID  - ND_2024_20_4_a8
ER  - 
%0 Journal Article
%A A. M. Kamachkin
%A D. K. Potapov
%A V. V. Yevstafyeva
%T On Motions of a Dynamical System with a Relay Hysteresis
%J Russian journal of nonlinear dynamics
%D 2024
%P 565-579
%V 20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2024_20_4_a8/
%G en
%F ND_2024_20_4_a8
A. M. Kamachkin; D. K. Potapov; V. V. Yevstafyeva. On Motions of a Dynamical System with a Relay Hysteresis. Russian journal of nonlinear dynamics, Tome 20 (2024) no. 4, pp. 565-579. http://geodesic.mathdoc.fr/item/ND_2024_20_4_a8/

[1] Krasnosel'skiĭ, M. A. and Pokrovskiĭ, A. V., Systems with Hysteresis, transl. from the Russian by M. Niezgódka, Springer, Berlin, 1989, xviii, 410 pp. | MR | Zbl

[2] Macki, J. W., Nistri, P., and Zecca, P., “Mathematical Models for Hysteresis”, SIAM Rev., 35:1 (1993), 94–123 | DOI | MR | Zbl

[3] Visintin, A., Differential Models of Hysteresis, Appl. Math. Sci., 111, Springer, Berlin, 1994, xii, 407 pp. | DOI | MR | Zbl

[4] Brokate, M. and Sprekels, J., Hysteresis and Phase Transitions, Appl. Math. Sci., 121, Springer, New York, 1996, x, 357 pp. | DOI | MR | Zbl

[5] Mayergoyz, I. D., Mathematical Models of Hysteresis and Their Applications, Acad. Press, Amsterdam, 2003, 498 pp. | MR

[6] The Science of Hysteresis: In 3 Vols., eds. G. Bertotti, I. D. Mayergoyz, Acad. Press, Amsterdam, 2006, xii, 705, xii, 648, xii, 751 pp. | MR

[7] McCarthy, S. and Rachinskii, D., “Dynamics of Systems with Preisach Memory near Equilibria”, Math. Bohem., 139:1 (2014), 39–73 | DOI | MR | Zbl

[8] Pimenov, A. and Rachinskii, D., “Homoclinic Orbits in a Two-Patch Predator–Prey Model with Preisach Hysteresis Operator”, Math. Bohem., 139:2 (2014), 285–298 | DOI | MR | Zbl

[9] Visintin, A., “Ten Issues about Hysteresis”, Acta Appl. Math., 132:1 (2014), 635–647 | DOI | MR | Zbl

[10] Brokate, M. and Krejčí, P., “Weak Differentiability of Scalar Hysteresis Operators”, Discrete Contin. Dyn. Syst., 35:6 (2015), 2405–2421 | DOI | MR | Zbl

[11] Fang, L., Wang, J., and Zhang, Q., “Identification of Extended Hammerstein Systems with Hysteresis-Type Input Nonlinearities Described by Preisach Model”, Nonlinear Dynam., 79:2 (2015), 1257–1273 | DOI | MR | Zbl

[12] Visintin, A., “PDEs with Hysteresis 30 Years Later”, Discrete Contin. Dyn. Syst. Ser. S, 8:4 (2015), 793–816 | MR | Zbl

[13] Botkin, N. D., Brokate, M., and El Behi-Gornostaeva, E. G., “One-Phase Flow in Porous Media with Hysteresis”, Phys. B, 486 (2016), 183–186 | DOI

[14] Rachinskii, D., “Realization of Arbitrary Hysteresis by a Low-Dimensional Gradient Flow”, Discrete Contin. Dyn. Syst. Ser. B, 21:1 (2016), 227–243 | DOI | MR | Zbl

[15] Arnold, M., Begun, N., Gurevich, P., Kwame, E., Lamba, H., and Rachinskii, D., “Dynamics of Discrete Time Systems with a Hysteresis Stop Operator”, SIAM J. Appl. Dyn. Syst., 16:1 (2017), 91–119 | DOI | MR | Zbl

[16] Leonov, G. A., Shumafov, M. M., Teshev, V. A., and Aleksandrov, K. D., “Differential Equations with Hysteresis Operators. Existence of Solutions, Stability, and Oscillations”, Differ. Equ., 53:13 (2017), 1764–1816 | DOI | MR | Zbl

[17] Differ. Uravn., 56:8 (2020), 1103–1121 (Russian) | DOI | DOI | MR | Zbl

[18] Izv. Akad. Nauk. Teor. i Sist. Upravelen., 2020, no. 4, 58–82 (Russian) | DOI | MR | Zbl

[19] Differ. Uravn., 57:8 (2021), 1104–1115 (Russian) | DOI | DOI | MR | Zbl

[20] Vasquez-Beltran, M. A., Jayawardhana, B., and Peletier, R., “Recursive Algorithm for the Control of Output Remnant of Preisach Hysteresis Operator”, IEEE Control Syst. Lett., 5:3 (2021), 1061–1066 | DOI | MR

[21] Yevstafyeva, V. V., Kamachkin, A. M., and Potapov, D. K., “Periodic Modes in an Automatic Control System with a Three-Position Hysteresis Relay”, Vestn. St. Petersb. Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 18:4 (2022), 596–607 (Russian) | MR

[22] Avtomat. i Telemekh., 2023, no. 3, 44–64 (Russian) | DOI | MR | Zbl

[23] Solovyov, A. M., Semenov, M. E., Meleshenko, P. A., Reshetova, O. O., Popov, M. A., and Kabulova, E. G., “Hysteretic Nonlinearity and Unbounded Solutions in Oscillating Systems”, Procedia Eng., 201 (2017), 578–583 | DOI

[24] Åström, K. J., “Oscillations in Systems with Relay Feedback”, Adaptive Control, Filtering and Signal Processing, IMA Vol. Math. Appl., 74, eds. K. J. Åström, G. C. Goodwin, P. R. Kumar, Springer, New York, 1995, 1–25 | MR

[25] Johansson, K. H., Rantzer, A., and Åström, K. J., “Fast Switches in Relay Feedback Systems”, Automatica, 35:4 (1999), 539–552 | DOI | Zbl

[26] Avtomat. i Telemekh., 2015, no. 6, 42–56 (Russian) | DOI | MR | Zbl

[27] Kamachkin, A. M., Potapov, D. K., and Yevstafyeva, V. V., “Existence of Periodic Solutions to Automatic Control System with Relay Nonlinearity and Sinusoidal External Influence”, Int. J. Robust Nonlinear Control, 27:2 (2017), 204–211 | DOI | MR | Zbl

[28] Kamachkin, A. M., Potapov, D. K., and Yevstafyeva, V. V., “Existence of Subharmonic Solutions to a Hysteresis System with Sinusoidal External Influence”, Electron. J. Differ. Equ., 2017:140 (2017), 10 pp. | MR

[29] Kamachkin, A. M., Potapov, D. K., and Yevstafyeva, V. V., “On Uniqueness and Properties of Periodic Solution of Second-Order Nonautonomous System with Discontinuous Nonlinearity”, J. Dyn. Control Syst., 23:4 (2017), 825–837 | DOI | MR | Zbl

[30] Ukraïn. Mat. Zh., 70:8 (2018), 1085–1096 | DOI | MR | Zbl

[31] Kamachkin, A. M., Potapov, D. K., and Yevstafyeva, V. V., “Existence of Periodic Modes in Automatic Control System with a Three-Position Relay”, Internat. J. Control, 93:4 (2020), 763–770 | DOI | MR | Zbl

[32] Differ. Uravn., 59:2 (2023), 150–163 (Russian) | DOI | DOI | MR | Zbl

[33] Differ. Uravn., 59:6 (2023), 712–725 (Russian) | DOI | DOI | MR | Zbl

[34] Differ. Uravn., 57:2 (2021), 169–178 (Russian) | DOI | DOI | MR | Zbl

[35] Mat. Zametki, 109:4 (2021), 529–543 (Russian) | DOI | DOI | MR | Zbl

[36] Ukraïn. Mat. Zh., 73:5 (2021), 640–650 | DOI | DOI | MR | Zbl

[37] Kamachkin, A. M., Potapov, D. K., and Yevstafyeva, V. V., “Continuous Dependence on Parameters and Boundedness of Solutions to a Hysteresis System”, Appl. Math., 67:1 (2022), 65–80 | DOI | MR | Zbl

[38] Differ. Uravn., 58:4 (2022), 456–469 (Russian) | DOI | MR | MR | Zbl

[39] Differ. Uravn., 59:7 (2023), 996–1000 (Russian) | DOI | DOI | MR | MR | Zbl

[40] Mat. Zametki, 114:2 (2023), 260–273 (Russian) | DOI | DOI | MR | Zbl

[41] Kamachkin, A. M., Potapov, D. K., and Yevstafyeva, V. V., “Two-Point Oscillatory Solutions to System with Relay Hysteresis and Nonperiodic External Disturbance”, Appl. Math., 69:3 (2024), 395–414 | DOI | MR | Zbl

[42] Kamachkin, A. M., Potapov, D. K., and Yevstafyeva, V. V., “Dynamics of Relay Systems with Hysteresis and Harmonic Perturbation”, Eurasian Math. J., 15:2 (2024), 48–60 | DOI | MR | Zbl

[43] Mat. Zametki, 115:5 (2024), 724–740 (Russian) | DOI | DOI | MR | Zbl

[44] Varigonda, S. and Georgiou, T. T., “Dynamics of Relay Relaxation Oscillators”, IEEE Trans. Automat. Control, 46:1 (2001), 65–77 | DOI | MR | Zbl

[45] Balanov, Z., Kravetc, P., Krawcewicz, W., and Rachinskii, D., “Equivariant Degree Method for Analysis of Hopf Bifurcation of Relative Periodic Solutions: Case Study of a Ring of Oscillators”, J. Differential Equations, 265:9 (2018), 4530–4574 | DOI | MR | Zbl

[46] Kamachkin, A. M., Potapov, D. K., and Yevstafyeva, V. V., “Dynamics and Synchronization in Feedback Cyclic Structures with Hysteresis Oscillators”, Vestn. St. Petersb. Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 16:2 (2020), 186–199 (Russian) | MR

[47] Yu, C.-C., Autotuning of PID Controllers: Relay Feedback Approach, Springer, London, 1999, xiv, 261 pp. | Zbl

[48] Birkhoff, G. D., Dynamical Systems, with an addendum by J. Moser, Amer. Math. Soc. Colloq. Publ., 9, AMS, Providence, R.I., 1966, 305 pp. | MR

[49] Schauder, J., “Der Fixpunktsatz in Funktionalräumen”, Studia Math., 2:1 (1930), 171–180 | DOI | MR

[50] Utkin, V. I., Sliding Modes and Their Applications in Variable Structure Systems, Mir, Moscow, 1978, 259 pp. | MR