On Particularities of the Realization of Unilateral Constraints with Piecewise Smooth Boundaries
Russian journal of nonlinear dynamics, Tome 20 (2024) no. 4, pp. 481-491.

Voir la notice de l'article provenant de la source Math-Net.Ru

Examples of mechanical systems subjected to unilateral holonomic constraints are considered. It is assumed that the boundary of the area of unconstrained motion has singularities. Possible ways of resolving the singularities based on knowledge about the mechanical origin of the constraints are indicated.
Keywords: mechanical systems subjected to constraints, unilateral holonomic constraints, unilateral constraints with singularities at boundaries, realization of unilateral holonomic constraints
@article{ND_2024_20_4_a3,
     author = {A. A. Burov},
     title = {On {Particularities} of the {Realization} of {Unilateral} {Constraints} with {Piecewise} {Smooth} {Boundaries}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {481--491},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2024_20_4_a3/}
}
TY  - JOUR
AU  - A. A. Burov
TI  - On Particularities of the Realization of Unilateral Constraints with Piecewise Smooth Boundaries
JO  - Russian journal of nonlinear dynamics
PY  - 2024
SP  - 481
EP  - 491
VL  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2024_20_4_a3/
LA  - en
ID  - ND_2024_20_4_a3
ER  - 
%0 Journal Article
%A A. A. Burov
%T On Particularities of the Realization of Unilateral Constraints with Piecewise Smooth Boundaries
%J Russian journal of nonlinear dynamics
%D 2024
%P 481-491
%V 20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2024_20_4_a3/
%G en
%F ND_2024_20_4_a3
A. A. Burov. On Particularities of the Realization of Unilateral Constraints with Piecewise Smooth Boundaries. Russian journal of nonlinear dynamics, Tome 20 (2024) no. 4, pp. 481-491. http://geodesic.mathdoc.fr/item/ND_2024_20_4_a3/

[1] Prikl. Mat. Mekh., 52:6 (1988), 883–894 (Russian) | DOI | MR | Zbl

[2] Prikl. Mat. Mekh., 59:4 (1995), 531–539 (Russian) | DOI | MR | Zbl

[3] Beryozkin, E. N., Course of Theoretical Mechanics, 2nd ed., MGU, Moscow, 1974, 648 pp. (Russian)

[4] Rubin, H. and Ungar, P., “Motion under a Strong Constraining Force”, Comm. Pure Appl. Math., 10:1 (1957), 65–87 | DOI | MR | Zbl

[5] Moreau, J. J., “Quadratic Programming in Mechanics: Dynamics of One-Sided Constraints”, SIAM J. Control, 4:1 (1966), 153–158 | DOI | MR

[6] Baumgarte, J., “Stabilization of Constraints and Integrals of Motion in Dynamical Systems”, Comput. Methods Appl. Mech. Engrg., 1:1 (1972), 1–16 | DOI | MR | Zbl

[7] Prikl. Mat. Mekh., 48:4 (1984), 632–636 (Russian) | DOI | MR

[8] Prikl. Mat. Mekh., 48:5 (1984), 725–732 (Russian) | DOI | MR

[9] Prikl. Mat. Mekh., 56:4 (1992), 597–603 (Russian) | DOI | MR | Zbl

[10] Prikl. Mat. Mekh., 64:5 (2000), 805–816 (Russian) | DOI | Zbl

[11] Prikl. Mat. Mekh., 67:2 (2003), 222–230 (Russian) | DOI | MR | Zbl

[12] Moreau, J. J., “An Introduction to Unilateral Dynamics”, Novel Approaches in Civil Engineering, Lect. Notes Appl. Comput. Mech., 14, eds. M. Frémond, F. Maceri, Springer, Berlin, 2004, 1–46 | DOI | Zbl

[13] Moreau, J. J., “Contact et frottement en dynamique des systèmes de corps rigides”, Revue Européenne des Éléments Finis, 9:1–3 (2012), 9–28

[14] Routh, E. J., An Elementary Treatise on the Dynamics of a System of Rigid Bodies, 3rd ed., Macmillan, London, 1877, 564 pp. | MR

[15] Kozlov, V. and Treshchev, D., Billiards: A Genetic Introduction in the Dynamics of Systems with Impacts, Transl. of Math. Monograph. AMS, 89, AMS, Providence, R.I., 1991, viii, 171 pp. | DOI | MR

[16] Ivanov, A. P., Modeling of Systems with Impacts, MGAPI, Moscow, 1990, 84 pp. (Russian) | MR

[17] Zhuravlev, V. F. and Fufaev, N. A., Mechanics of Systems with Unilateral Constraints, Nauka, Moscow, 1993, 240 pp. (Russian) | MR | Zbl

[18] Ivanov, A. P., Dynamics of Systems with Mechanical Collisions, Int. Programm of Education, Moscow, 1997, 336 pp. (Russian) | MR

[19] Brogliato, B., Nonsmooth Mechanics: Models, Dynamics and Control, 2nd ed., Springer, London, 1999, xx, 552 pp. | MR | Zbl

[20] Stronge, W. J., Impact Mechanics, Cambridge Univ. Press, Cambridge, 2000, 230 pp. | Zbl

[21] Leine, R. I. and Nijmeijer, H., Dynamics and Bifurcations of Non-Smooth Mechanical Systems, Lect. Notes Appl. Comput. Mech., 18, Springer, Berlin, 2004, xii, 236 pp. | DOI | MR | Zbl

[22] Dokl. Akad. Nauk SSSR, 272:3 (1983), 550–554 (Russian) | MR | Zbl

[23] Várkonyi, P. L. and Domokos, G., “Symmetry, Optima and Bifurcations in Structural Design”, Nonlinear Dynam., 43:1–2 (2006), 47–58 | MR

[24] Prikl Mat. Mekh., 63:5 (1999), 770–774 (Russian) | DOI | MR | Zbl

[25] Samsonov, V. A., “On the Restructuring of the Configuration Space of One Mechanical System”, Theoretical Mechanics: Collection of Scientific and Methodological Articles: Vol. 23, MGU, Moscow, 2000, 203–206 (Russian) | MR

[26] Samsonov, V. A. and Mikhalev, A. A., “Position Space Transformation for Mechanical System”, Probl. Mashinostr. Nadezhnosti Mash., 2005, no. 4, 13–16 (Russian)

[27] Probl. Mashinostr. Nadezhnosti Mash., 2008, no. 6, 10–14 (Russian) | DOI

[28] Mikhalev, A. A. and Selutsky, Yu. D., “Features of the Kinematic Chain Equilibrium Problem”, Theoretical Mechanics: Collection of Scientific and Methodological Articles: Vol. 27, MGU, Moscow, 2000, 168–173 (Russian)

[29] Vestn. Sankt-Peterburgsk. Univ. Matem., Mekh., Astronom., 7(65):4 (2020), 649–661 (Russian) | DOI | MR | MR | Zbl

[30] Vestn. Sankt-Peterburgsk. Univ. Matem., Mekh., Astronom., 9(67):2 (2022), 278–293 (Russian) | DOI | MR | Zbl

[31] Burian, S. N., “Specific Features of the Dynamics of the Rectilinear Motion of the Darboux Mechanism”, Vestn. St. Petersb. Univ. Math., 56:4 (2023), 577–585 | DOI | MR | Zbl

[32] Shahova, T. V., “On a Method for Realizing Unilateral Constraints”, Vestn. Mosk. Univ. Ser. 1 Mat. Mekh., 2000, no. 2, 30–35 (Russian) | MR

[33] Prikl. Mat. Mekh., 70:1 (2006), 20–34 (Russian) | DOI | MR | Zbl

[34] Bunday, B. D., Basic Optimisation Methods, Arnold, London, 1984, 136 pp.