Climb of the Chaplygin Sleigh on an Inclined Plane under Periodic Controls: Speedup and Uniform Motion
Russian journal of nonlinear dynamics, Tome 20 (2024) no. 4, pp. 463-479.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper addresses the problem of the Chaplygin sleigh moving on an inclined plane under the action of periodic controls. Periodic controls are implemented by moving point masses. It is shown that, under periodic oscillations of one point mass in the direction perpendicular to that of the knife edge, for a nonzero initial velocity there exists a motion with acceleration or a uniform motion (on average per period) in the direction opposite to that of the largest descent. It is shown that adding to the system two point masses which move periodically along some circle enables a period-averaged uniform motion of the system from rest.
Keywords: Chaplygin sleigh, motion on an inclined plane, speedup, nonholonomic mechanics
@article{ND_2024_20_4_a2,
     author = {I. A. Bizyaev and E. V. Vetchanin},
     title = {Climb of the {Chaplygin} {Sleigh} on an {Inclined} {Plane} under {Periodic} {Controls:} {Speedup} and {Uniform} {Motion}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {463--479},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2024_20_4_a2/}
}
TY  - JOUR
AU  - I. A. Bizyaev
AU  - E. V. Vetchanin
TI  - Climb of the Chaplygin Sleigh on an Inclined Plane under Periodic Controls: Speedup and Uniform Motion
JO  - Russian journal of nonlinear dynamics
PY  - 2024
SP  - 463
EP  - 479
VL  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2024_20_4_a2/
LA  - en
ID  - ND_2024_20_4_a2
ER  - 
%0 Journal Article
%A I. A. Bizyaev
%A E. V. Vetchanin
%T Climb of the Chaplygin Sleigh on an Inclined Plane under Periodic Controls: Speedup and Uniform Motion
%J Russian journal of nonlinear dynamics
%D 2024
%P 463-479
%V 20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2024_20_4_a2/
%G en
%F ND_2024_20_4_a2
I. A. Bizyaev; E. V. Vetchanin. Climb of the Chaplygin Sleigh on an Inclined Plane under Periodic Controls: Speedup and Uniform Motion. Russian journal of nonlinear dynamics, Tome 20 (2024) no. 4, pp. 463-479. http://geodesic.mathdoc.fr/item/ND_2024_20_4_a2/

[1] Ardentov, A. A. and Yefremov, K. S., “Automatic Reparking of the Robot Trailer along Suboptimal Paths”, Proc. of the Internat. Conf. “Nonlinearity, Information and Robotics” (Innopolis, Russia, Aug 2021), 5 pp.

[2] Bizyaev, I. A., Borisov, A. V., and Mamaev, I. S., “The Chaplygin Sleigh with Parametric Excitation: Chaotic Dynamics and Nonholonomic Acceleration”, Regul. Chaotic Dyn., 22:8 (2017), 955–975 | DOI | MR | Zbl

[3] Bizyaev, I. A., Borisov, A. V., Kozlov, V. V., and Mamaev, I. S., “Fermi-Like Acceleration and Power-Law Energy Growth in Nonholonomic Systems”, Nonlinearity, 32:9 (2019), 3209–3233 | DOI | MR | Zbl

[4] Bizyaev, I., Bolotin, S., and Mamaev, I., “Normal Forms and Averaging in an Acceleration Problem in Nonholonomic Mechanics”, Chaos, 31:1 (2021), Art. 013132, 16 pp. | DOI | MR

[5] Bizyaev, I. A., Borisov, A. V., and Mamaev, I. S., “The Chaplygin Sleigh with Parametric Excitation: Chaotic Dynamics and Nonholonomic Acceleration”, Regul. Chaotic Dyn., 22:8 (2017), 955–975 | DOI | MR | Zbl

[6] Borisov, A. V. and Mamaev, I. S., Rigid Body Dynamics: Hamiltonian Methods, Integrability, Chaos, R Dynamics, Institute of Computer Science, Izhevsk, 2005, 576 pp. (Russian) | MR

[7] Borisov, A. V., Kilin, A. A., Mamaev, I. S., and Bizyaev, I. A., Selected Problems of Nonholonomic Mechanics, R Dynamics, Institute of Computer Science, Izhevsk, 2016, 882 pp. (Russian) | MR

[8] Prikl. Mat. Mekh., 73:2 (2009), 219–225 (Russian) | DOI | MR | Zbl

[9] Borisov, A. V., Kilin, A. A., and Mamaev, I. S., “On the Hadamard – Hamel Problem and the Dynamics of Wheeled Vehicles”, Regul. Chaotic Dyn., 20:6 (2015), 752–766 | DOI | MR | Zbl

[10] Borisov, A. V., Kozlov, V. V., and Mamaev, I. S., “Asymptotic Stability and Associated Problems of Failing Rigid Body”, Regul. Chaotic Dyn., 12:5 (2007), 531–565 | DOI | MR | Zbl

[11] Uspekhi Fiz. Nauk, 187:9 (2017), 1003–1006 (Russian) | DOI | DOI

[12] Brill, A., Vorlesungen zur Einführung in die Mechanik raumerfüllender Massen, Teubner, Leipzig, 1909, 236 pp.

[13] Carathéodory, C., “Der Schlitten”, Z. Angew. Math. Mech., 13:2 (1933), 71–76 | DOI | Zbl

[14] Mat. Sb., 28:2 (1912), 303–314 (Russian) | DOI | MR | Zbl

[15] Neimark, Ju. I. and Fufaev, N. A., Dynamics of Nonholonomic Systems, reprint 1972, Trans. Math. Monogr., 33, AMS, Providence, R.I., 2004, 518 pp. | MR

[16] Prikl. Mat. Mekh., 51:4 (1987), 546–551 (Russian) | DOI | MR | Zbl

[17] Jung, P., Marchegiani, G., and Marchesoni, F., “Nonholonomic Diffusion of a Stochastic Sled”, Phys. Rev. E, 93:1 (2016), Art. 012606, 9 pp. | DOI

[18] Jagla, E. A. and Rojo, A. G., “Chiral Knife Edge: A Simplified Rattleback to Illustrate Spin Inversion”, Phys. Rev. E, 108:6 (2023), Art. 064213, 7 pp. | DOI | MR

[19] Kozlov, V. V., “The Phenomenon of Reversal in the Euler – Poincaré – Suslov Nonholonomic Systems”, J. Dyn. Control Syst., 22:4 (2016), 713–724 | DOI | MR | Zbl

[20] Vestn. Mosk. Univ. Ser. 1 Mat. Mekh., 2020, no. 2, 61–63 (Russian) | DOI | Zbl

[21] Karapetyan, A. V. and Shamin, A. Yu., “On the Movement of the Chaplygin Sleigh on a Horizontal Plane with Dry Friction”, Acta Astronaut., 176 (2020), 733–740 | DOI | MR

[22] Routh, E. J., The Advanced Part of a Treatise on the Dynamics of a System of Rigid Bodies: Being Part II of a Treatise on the Whole Subject, 6th ed., Dover, New York, 1955, xiv, 484 pp. | MR

[23] Kilin, A., Karavaev, Yu., and Yefremov, K., “Experimental Investigations of the Controlled Motion of the Roller Racer Robot”, Robotics for Sustainable Future: CLAWAR 2021, Lect. Notes Netw. Syst., 324, eds. D. Chugo, M. O. Tokhi, M. F. Silva, T. Nakamura, K. Goher, Springer, Cham, 2022, 428–437 | DOI

[24] Rauch-Wojciechowski, S. and Przybylska, M., “On Dynamics of Jellet's Egg. Asymptotic Solutions Revisited”, Regul. Chaotic Dyn., 25:1 (2020), 40–58 | DOI | MR | Zbl