Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2024_20_4_a1, author = {A. P. Markeev}, title = {On {Vibrations} of a {Heavy} {Material} {Point} in a {Fixed} {Ellipsoidal} {Bowl}}, journal = {Russian journal of nonlinear dynamics}, pages = {449--461}, publisher = {mathdoc}, volume = {20}, number = {4}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2024_20_4_a1/} }
A. P. Markeev. On Vibrations of a Heavy Material Point in a Fixed Ellipsoidal Bowl. Russian journal of nonlinear dynamics, Tome 20 (2024) no. 4, pp. 449-461. http://geodesic.mathdoc.fr/item/ND_2024_20_4_a1/
[1] Uspekhi Mat. Nauk, 18:6(114) (1963), 91–192 (Russian) | DOI | MR | Zbl
[2] Arnol'd, V. I., Kozlov, V. V., and Neĭshtadt, A. I., Mathematical Aspects of Classical and Celestial Mechanics, Encyclopaedia Math. Sci., 3, 3rd ed., Springer, Berlin, 2006, xiv, 518 pp. | DOI | MR | Zbl
[3] Moser, J. K., Lectures on Hamiltonian Systems, Mem. Amer. Math. Soc., 81, AMS, Providence, R.I., 1968, 60 pp. | MR
[4] Birkhoff, G. D., Dynamical Systems, Amer. Math. Soc. Colloq. Publ., 9, AMS, Providence, R.I., 1966, 305 pp. | MR
[5] Giacaglia, G. E. O., Perturbation Methods in Non-Linear Systems, Appl. Math. Sci., 8, Springer, New York, 1972, 369 pp. | DOI | MR | Zbl
[6] Malkin, I. G., Theory of Stability of Motion, U.S. Atomic Energy Commission, Washington, D.C., 1952, 456 pp.
[7] Malkin, I. G., Some Problems in the Theory of Nonlinear Oscillations, In 2 Vols.: Vol. 1, U.S. Atomic Energy Commission, Technical Information Service, Germantown, Md., 1959, 589 pp. | MR
[8] Guibout, V. and Scheeres, D. J., “Stability of Surface Motion on a Rotating Ellipsoid”, Celestial Mech. Dynam. Astronom., 87:3 (2003), 263–290 | DOI | MR | Zbl
[9] Koiller, J., Castilho, C., and Regis Rodrigues, A., “Vortex Pairs on the Triaxial Ellipsoid: Axis Equilibria Stability”, Regul. Chaotic Dyn., 24:1 (2019), 61–79 | DOI | MR | Zbl
[10] Makhdum, B. and Nadim, A., “Dynamics and Equilibria of $N$ Point Charges on a 2D Ellipse or a 3D Ellipsoid”, Appl. Math., 14:4 (2023), 245–264 | DOI | MR
[11] Markeev, A. P., “On the Problem of Nonlinear Oscillations of a Conservative System in the Absence of Resonance”, Prikl. Mat. Mekh., 88:3 (2024), 347–358 (Russian)
[12] Gantmacher, F. R., Lectures in Analytical Mechanics, Mir, Moscow, 1975, 264 pp.
[13] Pars, L. A., A Treatise on Analytical Mechanics, Heinemann, London, 1965, 641 pp. | MR
[14] Markeev, A. P., Theoretical Mechanics, RCD, Institute of Computer Science, Izhevsk, 2007, 592 pp. (Russian) | MR