Approximate Riemann Solvers for the Soave – Redlich – Kwong Equation of State
Russian journal of nonlinear dynamics, Tome 20 (2024) no. 3, pp. 345-359.

Voir la notice de l'article provenant de la source Math-Net.Ru

Three methods for constructing an approximate Riemann solver for the Soave – Redlich – Kwong real gas model are presented: linearization of nonlinear equations, cubic interpolation, and local approximation of the equation of state by a two-term equation of state. These methods are tested by considering the problem of the decay of a discontinuity in a pipe in an axisymmetric setting for the low-molecular and high-molecular substances, including a region of nonclassical gas behavior. It is demonstrated that the linearization method is reasonable only for the testing prob- lems. The method of approximation by cubic splines is acceptable for complex three-dimensional nonstationary calculations. However, it is found that the bicubic interpolation method does not work well for flows with large pressure drops. The local approximation method is the most economical and universal for practical calculations. It has been used for numerical modeling of real gas flows through a safety valve. The results of calculations for hydrogen and water vapor in a wide range of pressure variation are presented. The method of local approximation of the equation of state allows one to describe all features of gas flows for complex problems.
Keywords: Riemann problem, Godunov method, approximate solver, Soave – Redlich – Kwong equation of state
@article{ND_2024_20_3_a1,
     author = {M. R. Koroleva and V. A. Tenenev},
     title = {Approximate {Riemann} {Solvers} for the {Soave} {\textendash} {Redlich} {\textendash} {Kwong} {Equation} of {State}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {345--359},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2024_20_3_a1/}
}
TY  - JOUR
AU  - M. R. Koroleva
AU  - V. A. Tenenev
TI  - Approximate Riemann Solvers for the Soave – Redlich – Kwong Equation of State
JO  - Russian journal of nonlinear dynamics
PY  - 2024
SP  - 345
EP  - 359
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2024_20_3_a1/
LA  - en
ID  - ND_2024_20_3_a1
ER  - 
%0 Journal Article
%A M. R. Koroleva
%A V. A. Tenenev
%T Approximate Riemann Solvers for the Soave – Redlich – Kwong Equation of State
%J Russian journal of nonlinear dynamics
%D 2024
%P 345-359
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2024_20_3_a1/
%G en
%F ND_2024_20_3_a1
M. R. Koroleva; V. A. Tenenev. Approximate Riemann Solvers for the Soave – Redlich – Kwong Equation of State. Russian journal of nonlinear dynamics, Tome 20 (2024) no. 3, pp. 345-359. http://geodesic.mathdoc.fr/item/ND_2024_20_3_a1/

[1] Godunov, S. K., Zabrodin, A. V., Ivanov, M. Ya., Kraiko, A. N., and Prokopov, G. P., Numerical Solution of Multidimensional Problems of Gas Dynamics, Nauka, Moscow, 1976, 400 pp. (Russian) | MR

[2] van Leer, B., “Towards the Ultimate Conservative Difference Scheme: 5. A Second-Order Sequel to Godunov's Method”, J. Comput. Phys., 32:1 (1979), 101–136 | DOI | MR | Zbl

[3] Zh. Vychisl. Mat. Mat. Fiz., 60:4 (2020), 663–675 (Russian) | DOI | MR | Zbl

[4] Roe, P. L., “Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes”, J. Comput. Phys., 43:2 (1981), 357–372 | DOI | MR | Zbl

[5] Raeder, T., Tenenev, V. A., Koroleva, M. R., and Mishchenkova, O. V., “Nonlinear Processes in Safety Systems for Substances with Parameters Close to a Critical State”, Russian J. Nonlinear Dyn., 17:1 (2021), 119–138 | MR | Zbl

[6] Tenenev, V. A. and Koroleva, M. R., “Statement of the Riemann Problem for Polytropic Gases Described by Complex Equations of State”, Khimich. Fiz. Mezoskop., 25:4 (2023), 507–514 | MR

[7] Betancourt-Cárdenas, F. F., Galicia-Luna, L. A., and Sandler, S. I., “Equation of State for the Lennard – Jones Fluid Based on the Perturbation Theory”, Fluid Ph. Equilib., 264:1–2 (2008), 174–183 | DOI

[8] Peng, D. and Robinson, D., “A New Two-Constant Equation of State”, Ind. Eng. Chem. Fundamentals, 15:1 (1976), 59–64 | DOI | MR | Zbl

[9] Quartapelle, L., Castelletti, L., Guardone, A., and Quaranta, G., “Solution of the Riemann Problem of Classical Gasdynamics”, J. Comput. Phys., 190:1 (2003), 118–140 | DOI | MR | Zbl

[10] Fossati, M. and Quartapelle, L., The Riemann Problem for Hyperbolic Equations under a Nonconvex Flux with Two Inflection Points, , 2014, 104 pp. arXiv:1402.5906 [physics.flu-dyn] | Zbl

[11] Akberov, R. R., “Calculating the Vapor-Liquid Phase Equilibrium for Multicomponent Systems Using the Soave – Redlich – Kwong Equation”, Theor. Found. Chem. Eng., 45:3 (2011), 312–318 | DOI

[12] Borisov, A. A., Borisov, Al. A., Kutateladze, S. S., and Nakoryakov, V. E., “Rarefaction Shock Wave near the Critical Liquid-Vapour Point”, J. Fluid Mech., 126 (1983), 59–73 | DOI

[13] Soave, G., “20 Years of Redlich – Kwong Equation of State”, Fluid Ph. Equilib., 82 (1993), 345–359 | DOI

[14] Soave, G., “An Effective Modification of the Benedict – Webb – Rubin Equation of State”, Fluid Ph. Equilibria, 164:2 (1999), 157–172 | DOI

[15] Zohuri, B., “Properties of Pure Substances”, Physics of Cryogenics: An Ultralow Temperature Phenomenon, Elsevier, Amsterdam, 2018, 53–79

[16] Maxwell, J. C., “Van der Waals on the Continuity of the Gaseous and Liquid States”, The Scientific Papers of James Clerk Maxwell: Vol. 2, Camb. Libr. Collect. Phys. Sci., ed. W. D. Niven, Cambridge Univ. Press, Cambridge, 2011, 407–415 | MR

[17] Raeder, T., Tenenev, V. A., and Chernova, A. A., “Incorporation of Fluid Compressibility into the Calculation of the Stationary Mode of Operation of a Hydraulic Device at High Fluid Pressures”, Russian J. Nonlinear Dyn., 17:2 (2021), 195–209 | MR | Zbl

[18] Shikin, E. V. and Plis, A. I., Curves and Surfaces on a Computer Screen, Dialog-MIFI, Moscow, 1996, 240 pp. (Russian)

[19] Tenenev, V. A. and Koroleva, M. R., “Numerical Modeling of the Real van der Waals Gas Flow in the Shock Tube”, Intellekt. Sist. Proizv., 19:2 (2021), 96–103 (Russian) | DOI | MR

[20] Tenenev, V. A. and Koroleva, M. R., “Modeling of the Gas Dynamic Processes with Different Equations of State”, Intellekt. Sist. Proizv., 21:3 (2023), 115–123 (Russian) | DOI