Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2024_20_3_a1, author = {M. R. Koroleva and V. A. Tenenev}, title = {Approximate {Riemann} {Solvers} for the {Soave} {\textendash} {Redlich} {\textendash} {Kwong} {Equation} of {State}}, journal = {Russian journal of nonlinear dynamics}, pages = {345--359}, publisher = {mathdoc}, volume = {20}, number = {3}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2024_20_3_a1/} }
TY - JOUR AU - M. R. Koroleva AU - V. A. Tenenev TI - Approximate Riemann Solvers for the Soave – Redlich – Kwong Equation of State JO - Russian journal of nonlinear dynamics PY - 2024 SP - 345 EP - 359 VL - 20 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2024_20_3_a1/ LA - en ID - ND_2024_20_3_a1 ER -
M. R. Koroleva; V. A. Tenenev. Approximate Riemann Solvers for the Soave – Redlich – Kwong Equation of State. Russian journal of nonlinear dynamics, Tome 20 (2024) no. 3, pp. 345-359. http://geodesic.mathdoc.fr/item/ND_2024_20_3_a1/
[1] Godunov, S. K., Zabrodin, A. V., Ivanov, M. Ya., Kraiko, A. N., and Prokopov, G. P., Numerical Solution of Multidimensional Problems of Gas Dynamics, Nauka, Moscow, 1976, 400 pp. (Russian) | MR
[2] van Leer, B., “Towards the Ultimate Conservative Difference Scheme: 5. A Second-Order Sequel to Godunov's Method”, J. Comput. Phys., 32:1 (1979), 101–136 | DOI | MR | Zbl
[3] Zh. Vychisl. Mat. Mat. Fiz., 60:4 (2020), 663–675 (Russian) | DOI | MR | Zbl
[4] Roe, P. L., “Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes”, J. Comput. Phys., 43:2 (1981), 357–372 | DOI | MR | Zbl
[5] Raeder, T., Tenenev, V. A., Koroleva, M. R., and Mishchenkova, O. V., “Nonlinear Processes in Safety Systems for Substances with Parameters Close to a Critical State”, Russian J. Nonlinear Dyn., 17:1 (2021), 119–138 | MR | Zbl
[6] Tenenev, V. A. and Koroleva, M. R., “Statement of the Riemann Problem for Polytropic Gases Described by Complex Equations of State”, Khimich. Fiz. Mezoskop., 25:4 (2023), 507–514 | MR
[7] Betancourt-Cárdenas, F. F., Galicia-Luna, L. A., and Sandler, S. I., “Equation of State for the Lennard – Jones Fluid Based on the Perturbation Theory”, Fluid Ph. Equilib., 264:1–2 (2008), 174–183 | DOI
[8] Peng, D. and Robinson, D., “A New Two-Constant Equation of State”, Ind. Eng. Chem. Fundamentals, 15:1 (1976), 59–64 | DOI | MR | Zbl
[9] Quartapelle, L., Castelletti, L., Guardone, A., and Quaranta, G., “Solution of the Riemann Problem of Classical Gasdynamics”, J. Comput. Phys., 190:1 (2003), 118–140 | DOI | MR | Zbl
[10] Fossati, M. and Quartapelle, L., The Riemann Problem for Hyperbolic Equations under a Nonconvex Flux with Two Inflection Points, , 2014, 104 pp. arXiv:1402.5906 [physics.flu-dyn] | Zbl
[11] Akberov, R. R., “Calculating the Vapor-Liquid Phase Equilibrium for Multicomponent Systems Using the Soave – Redlich – Kwong Equation”, Theor. Found. Chem. Eng., 45:3 (2011), 312–318 | DOI
[12] Borisov, A. A., Borisov, Al. A., Kutateladze, S. S., and Nakoryakov, V. E., “Rarefaction Shock Wave near the Critical Liquid-Vapour Point”, J. Fluid Mech., 126 (1983), 59–73 | DOI
[13] Soave, G., “20 Years of Redlich – Kwong Equation of State”, Fluid Ph. Equilib., 82 (1993), 345–359 | DOI
[14] Soave, G., “An Effective Modification of the Benedict – Webb – Rubin Equation of State”, Fluid Ph. Equilibria, 164:2 (1999), 157–172 | DOI
[15] Zohuri, B., “Properties of Pure Substances”, Physics of Cryogenics: An Ultralow Temperature Phenomenon, Elsevier, Amsterdam, 2018, 53–79
[16] Maxwell, J. C., “Van der Waals on the Continuity of the Gaseous and Liquid States”, The Scientific Papers of James Clerk Maxwell: Vol. 2, Camb. Libr. Collect. Phys. Sci., ed. W. D. Niven, Cambridge Univ. Press, Cambridge, 2011, 407–415 | MR
[17] Raeder, T., Tenenev, V. A., and Chernova, A. A., “Incorporation of Fluid Compressibility into the Calculation of the Stationary Mode of Operation of a Hydraulic Device at High Fluid Pressures”, Russian J. Nonlinear Dyn., 17:2 (2021), 195–209 | MR | Zbl
[18] Shikin, E. V. and Plis, A. I., Curves and Surfaces on a Computer Screen, Dialog-MIFI, Moscow, 1996, 240 pp. (Russian)
[19] Tenenev, V. A. and Koroleva, M. R., “Numerical Modeling of the Real van der Waals Gas Flow in the Shock Tube”, Intellekt. Sist. Proizv., 19:2 (2021), 96–103 (Russian) | DOI | MR
[20] Tenenev, V. A. and Koroleva, M. R., “Modeling of the Gas Dynamic Processes with Different Equations of State”, Intellekt. Sist. Proizv., 21:3 (2023), 115–123 (Russian) | DOI