Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2024_20_2_a7, author = {G. N. Moiseev}, title = {No-Overturn {Conditions} for {Omnivehicle} {Motion}}, journal = {Russian journal of nonlinear dynamics}, pages = {311--336}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2024_20_2_a7/} }
G. N. Moiseev. No-Overturn Conditions for Omnivehicle Motion. Russian journal of nonlinear dynamics, Tome 20 (2024) no. 2, pp. 311-336. http://geodesic.mathdoc.fr/item/ND_2024_20_2_a7/
[1] Taheri, H. and Zhao, C. X., “Omnidirectional Mobile Robots, Mechanisms and Navigation Approaches”, Mech. Mach. Theory, 153:2 (2020), Art. 103958, 28 pp.
[2] Campion, G., Bastin, G., and d'Andréa-Novel, B., “Structural Properties and Classification of Kinematic and Dynamic Models of Wheeled Mobile Robots”, IEEE Trans. Robot. Autom., 12:1 (1996), 47–62 | DOI
[3] Ilon, B., Wheels for a Course Stable Selfpropelling Vehicle Movable in Any Desired Direction on the Ground or Some Other Base, Patent US No 3 876 255, 13 Nov, 1972
[4] Grabowfecki, J., Vehicle Wheel, Patent US No 1 305 535, 11 May, 1918
[5] Blumrich, J., Omnidirectional Wheel, Patent US No 3 789 947A, 17 Apr, 1972
[6] Moiseev, G. N. and Zobova, A. A., “Dynamics-Based Piecewise Constant Control of an Omnivehicle”, Russian J. Nonlinear Dyn., 18:4 (2022), 651–670 | MR
[7] Zobova, A. A., “Application of Laconic Forms of the Equations of Motion in the Dynamics of Nonholonomic Mobile Robots”, Nelin. Dinam., 7:4 (2011), 771–783 (Russian) | DOI
[8] Prikl. Mat. Mekh., 73:1 (2009), 13–22 (Russian) | DOI | MR | Zbl
[9] Yang, S., Lu, Y., and Li, S., “An Overview on Vehicle Dynamics”, Int. J. Dynam. Control, 1:4 (2013), 385–395 | DOI | MR
[10] Shen, J. and Hong, D., “OmBURo: A Novel Unicycle Robot with Active Omnidirectional Wheel”, Proc. of the IEEE Internat. Conf. on Robotics and Automation (ICRA'2020), 8237–8243
[11] Liu, Y., Jim Zhu, J., Williams, R. L., and Wu, J., “Omni-Directional Mobile Robot Controller Based on Trajectory Linearization”, Robot. Auton. Syst., 56:5 (2008), 461–477 | DOI
[12] Kilin, A. A. and Bobykin, A. D., “Control of a Vehicle with Omniwheels on a Plane”, Nelin. Dinam., 10:4 (2014), 473–481 (Russian) | DOI
[13] Rani, M., Kumar, N., and Singh, H. P., “Force/Motion Control of Constrained Mobile Manipulators including Actuator Dynamics”, Int. J. Dyn. Control, 7:3 (2019), 940–954 | DOI | MR
[14] Andreev, A. S. and Peregudova, O. A., “On Global Trajectory Tracking Control for an Omnidirectional Mobile Robot with a Displaced Center of Mass”, Russian J. Nonlinear Dyn., 16:1 (2020), 115–131 | MR | Zbl
[15] Kalmár-Nagy, T., D'Andrea, R., and Ganguly, P., “Near-Optimal Dynamic Trajectory Generation and Control of an Omnidirectional Vehicle”, Robot. Auton. Syst., 46:1 (2004), 47–64 | DOI
[16] Nelin. Dinam., 7:4 (2011), 785–801 (Russian) | DOI
[17] Zeidis, I. and Zimmermann, K., “Dynamics of a Four-Wheeled Mobile Robot with Mecanum Wheels”, ZAMM Z. Angew. Math. Mech., 99:12 (2019), e201900173, 22 pp. | DOI | MR
[18] Adamov, B. I., “A Study of the Controlled Motion of a Four-Wheeled Mecanum Platform”, Russian J. Nonlinear Dyn., 14:2 (2018), 265–290 | MR | Zbl
[19] Adamov, B. I. and Saypulaev, G. R., “Research on the Dynamics of an Omnidirectional Platform Taking into Account Real Design of Mecanum Wheels (As Exemplified by KUKA youBot)”, Russian J. Nonlinear Dyn., 16:2 (2020), 291–307 | MR | Zbl
[20] Kilin, A., Bozek, P., Karavaev, Yu., Klekovkin, A., and Shestakov, V., “Experimental Investigations of a Highly Maneuverable Mobile Omniwheel Robot”, Int. J. Adv. Robot. Syst., 14:6 (2017), 1–9 | DOI
[21] Izv. Ross. Akad. Nauk. Teor. Sist. Upr., 2007, no. 6, 142–149 (Russian) | DOI | MR | Zbl
[22] Prikl. Mat. Mekh., 82:4 (2018), 427–440 (Russian) | DOI | Zbl
[23] Mamaev, I. S., Kilin, A. A., Karavaev, Yu. L., and Shestakov, V. A., “Criteria of Motion without Slipping for an Omnidirectional Mobile Robot”, Russian J. Nonlinear Dyn., 17:4 (2021), 527–546 | MR | Zbl
[24] Williams, R. L. II, Carter, B. E., Gallina, P., and Rosati, G., “Wheeled Omni-Directional Robot Dynamics including Slip”, Proc. of the Internat. Design Engineering Technical Conf. and Computers and Information in Engineering Conf. (ASME'2002, Montreal, QC, Canada, 2002), Vol. 5, 201–207 | Zbl
[25] Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, 2023, no. 5, 15–26 (Russian) | DOI | Zbl
[26] Kosenko, I. I. and Gerasimov, K. V., “Physically Oriented Simulation of the Omnivehicle Dynamics”, Nelin. Dinam., 12:2 (2016), 251–262 (Russian) | DOI | MR | Zbl
[27] Kosenko, I., Stepanov, S., Gerasimov, K., and Stavrovskiy, M., “Virtual Testbench for the Omni Wheel Dynamics Simulation: New Contact Tracking Algorithm”, Proc. of the 7th European Congr. on Computational Methods in Applied Sciences and Engineering (ECCOMAS'2016), eds. M. Papadrakakis, V. Papadopoulos, G. Stefanou, V. Plevris, ECCOMAS, Crete Island, Greece, 2016, 4553–4571 | DOI
[28] Kosenko, I. I., Stepanov, S. Ya., and Gerasimov, K. V., “Contact Tracking Algorithms in Case of the Omni-Directional Wheel Rolling on the Horizontal Surface”, Multibody Syst. Dyn., 45:3 (2019), 273–292 | DOI | MR
[29] Appell, P., Traité de mécanique rationelle: Vol. 1. Statique. Dynamique du point, 6th ed., Gauthier-Villars, Paris, 1941, 635 pp.