On a Method for Integrating the Equations of Rigid
Russian journal of nonlinear dynamics, Tome 20 (2024) no. 2, pp. 209-218.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper presents a method for integrating the equations of motion of a rigid body having a fixed point in three homogeneous force fields. It is assumed that under certain conditions these equations admit an invariant relation that is characterized by the following property: the velocity of proper rotation of the body is twice as large as the velocity of precession. The integration of the initial system is reduced to the study of three algebraic equations for the main variables of the problem and one differential first-order equation with separating variables.
Keywords: three homogeneous force fields, precessional motions
Mots-clés : invariant relation
@article{ND_2024_20_2_a1,
     author = {G. V. Gorr},
     title = {On a {Method} for {Integrating} the {Equations} of {Rigid}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {209--218},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2024_20_2_a1/}
}
TY  - JOUR
AU  - G. V. Gorr
TI  - On a Method for Integrating the Equations of Rigid
JO  - Russian journal of nonlinear dynamics
PY  - 2024
SP  - 209
EP  - 218
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2024_20_2_a1/
LA  - en
ID  - ND_2024_20_2_a1
ER  - 
%0 Journal Article
%A G. V. Gorr
%T On a Method for Integrating the Equations of Rigid
%J Russian journal of nonlinear dynamics
%D 2024
%P 209-218
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2024_20_2_a1/
%G en
%F ND_2024_20_2_a1
G. V. Gorr. On a Method for Integrating the Equations of Rigid. Russian journal of nonlinear dynamics, Tome 20 (2024) no. 2, pp. 209-218. http://geodesic.mathdoc.fr/item/ND_2024_20_2_a1/

[1] Ishlinskii, A. Yu., Orientation, Gyroscopes, and Inertial Navigation, Nauka, Moscow, 1976, 672 pp. (Russian) | MR

[2] Klein, F. and Sommerfeld, A., Über die Theorie des Kreisels, Bibliotheca Mathematica Teubneriana, 1, Teubner, Stuttgart, 1965, vi, 966 pp. | MR

[3] Grioli, G., “Esistenza e determinazione delle precessioni regolari dinamicamente possibili per un solido pesante asimmetrico”, Ann. Mat. Pura Appl. (4), 26:3–4 (1947), 271–281 | DOI | MR | Zbl

[4] Bressan, A., “Sulle precessioni d'un corpo rigido costituenti moti di Hess”, Rend. Sem. Mat. Univ. Padova, 27 (1957), 276–283 | MR | Zbl

[5] Dokshevich, A. I., Finite-Form Solutions of the Euler – Poisson Equations, Naukova Dumka, Kiev, 1992, 168 pp. (Russian) | MR

[6] Gorr, G. V., Maznev, A. V., and Shchetinina, E. K., Precession Motions in the Rigid Body Dynamics and in the Dynamics of Coupled Rigid Bodies, Donetsk Nat. Univ., Donetsk, 2009, 222 pp. (Russian)

[7] Gorr, G. V. and Maznev, A. V., Dynamics of a Gyrostat Having a Fixed Point, Donetsk Nat. Univ., Donetsk, 2010, 364 pp. (Russian)

[8] Gorr, G. V., Maznev, A. V., and Kotov, G. A., The Movement of the Gyrostat with a Variable Gyrostatic Moment, Inst. Prikl. Matem. Mekh., Donetsk, 2017, 265 pp. (Russian)

[9] Prikl. Mat. Mekh., 82:5 (2018), 559–571 (Russian) | DOI | MR | Zbl

[10] Ol'shanskii, V. Yu., “New Cases of Regular Precession of an Asymmetric Liquid-Filled Rigid Body”, Celestial Mech. Dynam. Astronom., 131:12 (2019), Paper No. 57, 19 pp. | MR | Zbl

[11] Prikl. Mat. Mekh., 85:5 (2021), 547–564 (Russian) | DOI | MR | Zbl

[12] Prikl. Mat. Mekh., 67:4 (2003), 573–587 (Russian) | DOI | MR | Zbl

[13] Prikl. Mat. Mekh., 52:5 (1988), 707–712 (Russian) | DOI | MR | Zbl

[14] Yehia, H. M., “On the Regular Precession of an Asymmetric Rigid Body Acted upon by Uniform Gravity and Magnetic Fields”, EJBAS, 2:3 (2015), 200–205

[15] Yehia, H. M., “Regular Precession of a Rigid Body (Gyrostat) Acted upon by an Irreducible Combination of Three Classical Fields”, J. Egypt. Math. Soc., 25:2 (2017), 216–219 | DOI | MR | Zbl

[16] Hussein, A. M., “Precessional Motion of a Rigid Body Acted upon by Three Irreducible Fields”, Russian J. Nonlinear Dyn., 15:3 (2019), 285–292 | MR | Zbl

[17] Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, 2023, no. 3, 123–134 (Russian) | DOI | MR | Zbl

[18] Prikl. Mat. Mekh., 87:1 (2023), 3–18 (Russian) | DOI | MR

[19] Gorr, G. V., “On a Class of Precessions of a Rigid Body with a Fixed Point under the Action of Forces of Three Homogeneous Force Fields”, Russian J. Nonlinear Dyn., 19:2 (2023), 249–264 | MR | Zbl