On a Method for Integrating the Equations of Rigid
Russian journal of nonlinear dynamics, Tome 20 (2024) no. 2, pp. 209-218

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper presents a method for integrating the equations of motion of a rigid body having a fixed point in three homogeneous force fields. It is assumed that under certain conditions these equations admit an invariant relation that is characterized by the following property: the velocity of proper rotation of the body is twice as large as the velocity of precession. The integration of the initial system is reduced to the study of three algebraic equations for the main variables of the problem and one differential first-order equation with separating variables.
Keywords: three homogeneous force fields, precessional motions
Mots-clés : invariant relation
@article{ND_2024_20_2_a1,
     author = {G. V. Gorr},
     title = {On a {Method} for {Integrating} the {Equations} of {Rigid}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {209--218},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2024_20_2_a1/}
}
TY  - JOUR
AU  - G. V. Gorr
TI  - On a Method for Integrating the Equations of Rigid
JO  - Russian journal of nonlinear dynamics
PY  - 2024
SP  - 209
EP  - 218
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2024_20_2_a1/
LA  - en
ID  - ND_2024_20_2_a1
ER  - 
%0 Journal Article
%A G. V. Gorr
%T On a Method for Integrating the Equations of Rigid
%J Russian journal of nonlinear dynamics
%D 2024
%P 209-218
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2024_20_2_a1/
%G en
%F ND_2024_20_2_a1
G. V. Gorr. On a Method for Integrating the Equations of Rigid. Russian journal of nonlinear dynamics, Tome 20 (2024) no. 2, pp. 209-218. http://geodesic.mathdoc.fr/item/ND_2024_20_2_a1/