Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2024_20_1_a9, author = {S. V. Gonchenko and O. V. Gordeeva}, title = {On {Two-Dimensional} {Diffeomorphisms} with {Homoclinic} {Orbits} to {Nonhyperbolic} {Fixed} {Points}}, journal = {Russian journal of nonlinear dynamics}, pages = {151--165}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2024_20_1_a9/} }
TY - JOUR AU - S. V. Gonchenko AU - O. V. Gordeeva TI - On Two-Dimensional Diffeomorphisms with Homoclinic Orbits to Nonhyperbolic Fixed Points JO - Russian journal of nonlinear dynamics PY - 2024 SP - 151 EP - 165 VL - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2024_20_1_a9/ LA - en ID - ND_2024_20_1_a9 ER -
%0 Journal Article %A S. V. Gonchenko %A O. V. Gordeeva %T On Two-Dimensional Diffeomorphisms with Homoclinic Orbits to Nonhyperbolic Fixed Points %J Russian journal of nonlinear dynamics %D 2024 %P 151-165 %V 20 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2024_20_1_a9/ %G en %F ND_2024_20_1_a9
S. V. Gonchenko; O. V. Gordeeva. On Two-Dimensional Diffeomorphisms with Homoclinic Orbits to Nonhyperbolic Fixed Points. Russian journal of nonlinear dynamics, Tome 20 (2024) no. 1, pp. 151-165. http://geodesic.mathdoc.fr/item/ND_2024_20_1_a9/
[1] Arnold, V. I., Afrajmovich, V. S., Il'yashenko, Yu. S., and Shil'nikov, L. P., Bifurcation Theory and Catastrophe Theory, translated from the 1986 Russian original by N. D. Kazarinoff, reprint of the 1994 English edition, Encyclopaedia Math. Sci., 5, Springer, Berlin, 1999, viii, 271 pp. | MR
[2] Gonchenko, S. V., Shil'nikov, L. P., and Turaev, D. V., “On Models with Nonrough Poincaré Homoclinic Curves”, Phys. D, 62:1–4 (1993), 1–14 | DOI | MR | Zbl
[3] Gonchenko, S. V., Shil'nikov, L. P., and Turaev, D. V., “Dynamical Phenomena in Systems with Structurally Unstable Poincaré Homoclinic Orbits”, Chaos, 6:1 (1996), 15–31 | DOI | MR | Zbl
[4] Gonchenko, S. V., Turaev, D. V., and Shil'nikov, L. P., “Homoclinic Tangencies of an Arbitrary Order in Newhouse Domains”, J. Math. Sci., 105:1 (2001), 1738–1778 | DOI
[5] Gonchenko, S. V., Shilnikov, L. P., and Turaev, D. V., “On Dynamical Properties of Multidimensional Diffeomorphisms from Newhouse Regions: 1”, Nonlinearity, 21:5 (2008), 923–972 | DOI | MR | Zbl
[6] Homoclinic Tangencies, eds. S. V. Gonchenko, L. P. Shilnikov, RCD, Institute of Computer Science, Izhevsk, 2007, 524 pp. (Russian)
[7] Afraimovich, V. S. and Shilnikov, L. P., “Certain Global Bifurcations Connected with the Disappearance of a Fixed Point of Saddle-Node Type”, Dokl. Akad. Nauk SSSR, 219 (1974), 1281–1284 (Russian) | MR | Zbl
[8] Prikl. Mat. Mekh., 41:4 (1977), 618–627 (Russian) | DOI | MR
[9] Methods of Qualitative Theory of Differential Equations, ed. E. A. Leontovich-Andronova, Gorky Gos. Univ., Gorky, 1983, 3–26 (Russian) | MR | Zbl
[10] van der Pol, B. and van der Mark, J., “Frequency Demultiplication”, Nature, 120 (1927), 363–364 | DOI
[11] Andronow, A. and Witt, A., “Zur Theorie des Mitnehmens von van der Pol”, Arch. Elektrotech., 24:1 (1930), 99–110 | DOI
[12] Aronson, D. G., Chory, M. A., Hall, G. R., and McGehee, R. P., “Bifurcations from an Invariant Circle for Two-Parameter Families of Maps of the Plane: A Computer-Assisted Study”, Comm. Math. Phys., 83:3 (1982), 303–354 | DOI | MR | Zbl
[13] Newhouse, S., Palis, J., and Takens, F., “Bifurcations and Stability of Families of Diffeomorphisms”, Inst. Hautes Études Sci. Publ. Math., 57 (1983), 5–71 | DOI | MR | Zbl
[14] Turaev, D. and Shilnikov, L., “Bifurcations of Torus-Chaos Quasiattractors”, Mathematical Mechanisms of Turbulence: Contemporary Theory of Nonlinear Dynamics with Application to Turbulence Modeling, Akad. Nauk Ukr. SSR, Kiev, 1986, 113–121 (Russian) | MR
[15] Dokl. Akad. Nauk, 342:5 (1995), 596–599 (Russian) | MR | Zbl
[16] Shil'nikov, L. P. and Turaev, D. V., “Simple Bifurcations Leading to Hyperbolic Attractors: Computational Tools of Complex Systems: 1”, Comput. Math. Appl., 34:2–4 (1997), 173–193 | DOI | MR | Zbl
[17] Dokl. Akad. Nauk SSSR, 243:1 (1978), 26–29 (Russian) | MR | Zbl
[18] Díaz, L. J. and Rocha, J., “Non-Critical Saddle-Node Cycles and Robust Non-Hyperbolic Dynamics”, Dynam. Stability Systems, 12:2 (1997), 109–135 | DOI | MR | Zbl
[19] Díaz, L. J. and Ures, R., “Critical Saddle-Node Cycles: Hausdorff Dimension and Persistence of Tangencies”, Ergodic Theory Dynam. Systems, 22:4 (2002), 1117–1140 | MR | Zbl
[20] Díaz, L. J. and Rios, I. L., “Critical Saddle-Node Horseshoes: Bifurcations and Entropy”, Nonlinearity, 16:3 (2003), 897–928 | DOI | MR | Zbl
[21] Gonchenko, S. V., Gordeeva, O. V., Lukyanov, V. I., and Ovsyannikov, I. I., “On Bifurcations of Multidimensional Diffeomorphisms Having a Homoclinic Tangency to a Saddle-Node”, Regul. Chaotic Dyn., 19:4 (2014), 461–473 | DOI | MR | Zbl
[22] Gonchenko, S. V., Gordeeva, O. V., Lukyanov, V. I., and Ovsyannikov, I. I., “On Bifurcaions of Two-Dimensional Diffeomorphisms with a Homoclinic Tangency to a Saddle-Node Fixed Point”, Vestn. NNGU, 2014, no. 2(1), 198–209 (Russian) | MR
[23] Lukjanov, V. I., “On Existence of Smooth Invariant Foliations in a Neighbourhood of Some Non-Rough Fixed Points of a Diffeomorphism”, Differential and Integral Equations: Vol. 3, ed. N. F. Otrokov, Gorky Gos. Univ., Gorky, 1979, 60–66 (Russian) | MR
[24] Shilnikov, L. P., Shilnikov, A. L., Turaev, D., and Chua, L. O., Methods of Qualitative Theory in Nonlinear Dynamics: Part 1, 2, World Sci. Ser. Nonlinear Sci. Ser. A Monogr. Treatises, 4, World Sci., River Edge, N.J., 1998, xxiv, 957 pp. | MR
[25] Mat. Sb. (N. S.), 74(116):3 (1967), 378–397 (Russian) | DOI | MR
[26] Mat. Sb. (N. S.), 88(130):4(8) (1972), 475–492 (Russian) | DOI | MR | Zbl
[27] Mat. Sb. (N. S.), 90(132):1 (1973), 139–156 (Russian) | DOI | MR | Zbl