Bifurcation Analysis of the Problem of Two Vortices on a Finite Flat Cylinder
Russian journal of nonlinear dynamics, Tome 20 (2024) no. 1, pp. 95-111.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper addresses the problem of the motion of two point vortices of arbitrary strengths in an ideal incompressible fluid on a finite flat cylinder. A procedure of reduction to the level set of an additional first integral is presented. It is shown that, depending on the parameter values, three types of bifurcation diagrams are possible in the system. A complete bifurcation analysis of the system is carried out for each of them. Conditions for the orbital stability of generalizations of von Kármán streets for the problem under study are obtained.
Keywords: point vortices, ideal fluid, flat cylinder, bifurcation diagram, stability, boundary, flow in a strip
Mots-clés : phase portrait, von Kármán vortex street
@article{ND_2024_20_1_a5,
     author = {A. A. Kilin and E. M. Artemova},
     title = {Bifurcation {Analysis} of the {Problem} of {Two} {Vortices} on a {Finite} {Flat} {Cylinder}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {95--111},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2024_20_1_a5/}
}
TY  - JOUR
AU  - A. A. Kilin
AU  - E. M. Artemova
TI  - Bifurcation Analysis of the Problem of Two Vortices on a Finite Flat Cylinder
JO  - Russian journal of nonlinear dynamics
PY  - 2024
SP  - 95
EP  - 111
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2024_20_1_a5/
LA  - en
ID  - ND_2024_20_1_a5
ER  - 
%0 Journal Article
%A A. A. Kilin
%A E. M. Artemova
%T Bifurcation Analysis of the Problem of Two Vortices on a Finite Flat Cylinder
%J Russian journal of nonlinear dynamics
%D 2024
%P 95-111
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2024_20_1_a5/
%G en
%F ND_2024_20_1_a5
A. A. Kilin; E. M. Artemova. Bifurcation Analysis of the Problem of Two Vortices on a Finite Flat Cylinder. Russian journal of nonlinear dynamics, Tome 20 (2024) no. 1, pp. 95-111. http://geodesic.mathdoc.fr/item/ND_2024_20_1_a5/

[1] von Helmholtz, H., “Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen”, J. Reine Angew. Math., 55 (1858), 25–55 | MR

[2] Newton, P. K., “$N$ Vortices in the Plane”, The $N$-Vortex Problem, Appl. Math. Sci., 145, Springer, New York, 2001, 65–115 | DOI | MR

[3] Kozlov, V. V., Dynamical Systems 10: General Theory of Vortices, Encyclopaedia Math. Sci., 67, Springer, Berlin, 2003, 184 pp. | DOI | MR

[4] Borisov, A. V. and Mamaev, I. S., Mathematical Methods in the Dynamics of Vortex Structures, RCD, Institute of Computer Science, Izhevsk, 2005, 368 pp. (Russian) | MR

[5] Hally, D., “Stability of Streets of Vortices on Surfaces of Revolution with a Reflection Symmetry”, J. Math. Phys., 21:1 (1980), 211–217 | DOI | MR | Zbl

[6] Kimura, Y., “Vortex Motion on Surfaces with Constant Curvature”, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 455:1981 (1999), 245–259 | DOI | MR | Zbl

[7] Sakajo, T. and Shimizu, Y., “Point Vortex Interactions on a Toroidal Surface”, Proc. Roy. Soc. London Ser. A, 472:2191 (2016), Art. 20160271, 24 pp. | MR

[8] Boatto, S. and Koiller, J., “Vortices on Closed Surfaces”, Geometry, Mechanics, and Dynamics, Fields Inst. Commun., 73, eds. D. E. Chang, D. D. Holm, G. Patrick, T. Ratiu, Springer, New York, 2015, 185–237 | DOI | MR | Zbl

[9] Grotta-Ragazzo, C., Gustafsson, B., and Koiller, J., On the Interplay between Vortices and Harmonic Flows: Hodge Decomposition of Euler's Equations in 2D, , 2023, 80 pp. arXiv:2309.12582v1 [math-ph] | MR

[10] von Kármán, Th., “Über den Mechanismus des Widerstandes, den ein bewegter Körper in einer Flüssigkeit erfährt: 1”, Nachr. v. d. Gesellsch. d. Wiss. zu Göttingen, Math.-Phys. Klasse, 1911 (1911), 509–517

[11] Aref, H. and Stremler, M. A., “On the Motion of Three Point Vortices in a Periodic Strip”, J. Fluid Mech., 314 (1996), 1–25 | DOI | MR | Zbl

[12] Basu, S. and Stremler, M. A., “On the Motion of Two Point Vortex Pairs with Glide-Reflective Symmetry in a Periodic Strip”, Phys. Fluids, 27:10 (2015), Art. 103603, 20 pp. | DOI

[13] Montaldi, J., Soulière, A., and Tokieda, T., “Vortex Dynamics on a Cylinder”, SIAM J. Appl. Dyn. Syst., 2:3 (2003), 417–430 | DOI | MR | Zbl

[14] Guenther, N.-E., Massignan, P., and Fetter, A. L., “Quantized Superfluid Vortex Dynamics on Cylindrical Surfaces and Planar Annuli”, Phys. Rev. A, 96:6 (2017), Art. 063608, 14 pp. | DOI

[15] O'Neil, K. A., “On the Hamiltonian Dynamics of Vortex Lattices”, J. Math. Phys., 30:6 (1989), 1373–1379 | DOI | MR

[16] Stremler, M. A. and Aref, H., “Motion of Three Point Vortices in a Periodic Parallelogram”, J. Fluid Mech., 392 (1999), 101–128 | DOI | MR | Zbl

[17] Kilin, A. A. and Artemova, E. M., “Integrability and Chaos in Vortex Lattice Dynamics”, Regul. Chaotic Dyn., 24:1 (2019), 101–113 | DOI | MR | Zbl

[18] Prikl. Mekh. Tekhn. Fiz., 1983, no. 5, 62–67 (Russian) | DOI

[19] Kunin, I. A., Hussain, F., and Zhou, X., “Dynamics of a Pair of Vortices in a Rectangle”, Internat. J. Engrg. Sci., 32:11 (1994), 1835–1844 | DOI | MR | Zbl

[20] Artemova, E. M., “Dynamics of Two Vortices on a Finite Flat Cylinder”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 33:4 (2023), 642–658 (Russian) | DOI | MR

[21] Stremler, M. A., “Relative Equilibria of Singly Periodic Point Vortex Arrays”, Phys. Fluids, 15:12 (2003), 3767–3775 | DOI | MR

[22] Meleshko, V. V. and Aref, H., “A Bibliography of Vortex Dynamics 1858–1956”, Adv. Appl. Mech., 41 (2007), 197–292 | DOI

[23] Aref, H., Stremler, M. A., and Ponta, F. L., “Exotic Vortex Wakes: Point Vortex Solutions”, J. Fluids Struct., 22:6–7 (2006), 929–940 | DOI

[24] Kochin, N. E., Kibel, I. A., and Roze, N. V., Theoretical Hydrodynamics, Wiley, New York, 1964, 583 pp.

[25] Tomotika, S., “On the Stability of a Kármán Vortex Street in a Channel of Finite Breadth: 1”, Proc. Phys. Math. Soc. Japan (3), 11:5–6 (1929), 53–68

[26] Imai, I., “On the Stability of a Double Row of Vortices with Unequal Strengths in a Channel of Finite Breadth”, Proc. Phys. Math. Soc. Japan (3), 18 (1936), 436–459

[27] Glauert, H., “The Characteristics of a Kármán Vortex Street in a Channel of Finite Breadth”, Proc. R. Soc. Lond. Ser. A Math. Phys. Sci., 120:784 (1928), 34–46