Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2024_20_1_a4, author = {E. V. Vetchanin and A. R. Valieva}, title = {Analysis of the {Force} and {Torque} {Arising} {During} the {Oscillatory} {Motion} of a {Joukowsky} {Foil} in a {Fluid}}, journal = {Russian journal of nonlinear dynamics}, pages = {79--93}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2024_20_1_a4/} }
TY - JOUR AU - E. V. Vetchanin AU - A. R. Valieva TI - Analysis of the Force and Torque Arising During the Oscillatory Motion of a Joukowsky Foil in a Fluid JO - Russian journal of nonlinear dynamics PY - 2024 SP - 79 EP - 93 VL - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2024_20_1_a4/ LA - en ID - ND_2024_20_1_a4 ER -
%0 Journal Article %A E. V. Vetchanin %A A. R. Valieva %T Analysis of the Force and Torque Arising During the Oscillatory Motion of a Joukowsky Foil in a Fluid %J Russian journal of nonlinear dynamics %D 2024 %P 79-93 %V 20 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2024_20_1_a4/ %G en %F ND_2024_20_1_a4
E. V. Vetchanin; A. R. Valieva. Analysis of the Force and Torque Arising During the Oscillatory Motion of a Joukowsky Foil in a Fluid. Russian journal of nonlinear dynamics, Tome 20 (2024) no. 1, pp. 79-93. http://geodesic.mathdoc.fr/item/ND_2024_20_1_a4/
[1] Pis'ma Zh. Tekh. Fiz., 42:17 (2016), 9–19 (Russian) | DOI
[2] Borisov, A. V., Mamaev, I. S., and Vetchanin, E. V., “Self-Propulsion of a Smooth Body in a Viscous Fluid under Periodic Oscillations of a Rotor and Circulation”, Regul. Chaotic Dyn., 23:7–8 (2018), 850–874 | DOI | MR | Zbl
[3] Mat. Sb., 28:1 (1911), 120–166 (Russian) | MR
[4] Chaplygin, S. A., “On the Action of a Plane-Parallel Air Flow upon a Cylindrical Wing Moving within It”, The Selected Works on Wing Theory of Sergei A. Chaplygin, Garbell Research Foundation, San Francisco, 1956, 42–72 | MR
[5] Giesing, J. P., “Nonlinear Two-Dimensional Unsteady Potential Flow with Lift”, J. Aircraft, 5:2 (1968), 135–143 | DOI
[6] Jasak, H., Error Analysis and Estimation for the Finite Volume Method with Applications to Fluid Flows, PhD Dissertation, Imperial College London (University of London), London, UK, 1996, 396 pp.
[7] Karavaev, Yu. L., Klekovkin, A. V., Mamaev, I. S., Tenenev, V. A., and Vetchanin, E. V., “Simple Physical Model for Control of an Propellerless Aquatic Robot”, J. Mechanisms Robotics, 14:1 (2022), 011007, 11 pp. | DOI | MR
[8] Kirchhoff, G., Vorlesungen über mathematische Physik: Vol. 1. Mechanik, Teubner, Leipzig, 1876, 466 pp.
[9] Kochin, N. E., Kibel, I. A., and Roze, N. V., Theoretical Hydrodynamics, Wiley, New York, 1964, 583 pp.
[10] Korotkin, A. I., Added Masses of Ship Structures, v. 88, Fluid Mech. Appl., Springer, Dordrecht, 2009, xii, 392 pp.
[11] Kutta, W. M., “Auftriebskräfte in strömenden Flüssigkeiten”, Illustr. aeronaut. Mitteilungen, 6 (1902), 133–135
[12] Lavrentiev, M. A. and Shabat, B. V., Methods of the Theory of Function of Complex Variable, Nauka, Moscow, 1987, 544 pp. (Russian) | MR
[13] Mougin, G. and Magnaudet, J., “The Generalized Kirchhoff Equations and Their Application to the Interaction between a Rigid Body and an Arbitrary Time-Dependent Viscous Flow”, Int. J. Multiph. Flow, 28:11 (2002), 1837–1851 | DOI | Zbl
[14] Mason, R. J., Fluid Locomotion and Trajectory Planning for Shape-Changing Robots, PhD Dissertation, California Institute of Technology, Pasadena, Calif., USA, 2003, 264 pp.
[15] Michelin, S. and Llewellyn Smith, S. G., “An Unsteady Point Vortex Method for Coupled Fluid-Solid Problems”, Theor. Comput. Fluid Dyn., 23:2 (2009), 127–153 | DOI | Zbl
[16] Sedov, L. I., Two-Dimensional Problems in Hydrodynamics and Aerodynamics, Wiley, New York, 1965, 427 pp. | MR | Zbl
[17] Streitlien, K., A Simulation Procedure for Vortex Flow over an Oscillating Wing, Technical Report, MITSG 94-7, MIT Sea Grant College Program, MIT, Cambridge, Mass., 1994, 31 pp.
[18] Streitlien, K. and Triantafyllou, M. S., “Force and Moment on a Joukowski Profile in the Presence of Point Vortices”, AIAA J., 33:4 (1995), 603–610 | DOI | Zbl
[19] Tallapragada, P., “A Swimming Robot with an Internal Rotor As a Nonholonomic System”, Proc. of the American Control Conf. (ACC, Chicago, Ill., Jul 2015), 657–662
[20] Xiong, Z., Su, Y., and Lipson, H., “Fast Untethered Soft Robotic Crawler with Elastic Instability”, Proc. of the IEEE Internat. Conf. on Robotics and Automation (ICRA, London, UK, 2023), 2606–2612