Analysis of the Force and Torque Arising During the Oscillatory Motion of a Joukowsky Foil in a Fluid
Russian journal of nonlinear dynamics, Tome 20 (2024) no. 1, pp. 79-93.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of describing the motion of a rigid body in a fluid is addressed by considering a symmetric Joukowsky foil. Within the framework of the model of an ideal fluid, the force and torque acting on an unsteady moving foil are calculated. The analytical results are compared with those obtained based on the numerical solution of the Navier – Stokes equations. It is shown that analytical expressions for the force and torque can be consistent with the results of numerical simulations using scaling and a delayed arguments.
Keywords: motion of a body in a fluid, Joukowsky foil, complex potential, the Kutta – Chaplygin condition, the Navier – Stokes equations
@article{ND_2024_20_1_a4,
     author = {E. V. Vetchanin and A. R. Valieva},
     title = {Analysis of the {Force} and {Torque} {Arising} {During} the {Oscillatory} {Motion} of a {Joukowsky} {Foil} in a {Fluid}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {79--93},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2024_20_1_a4/}
}
TY  - JOUR
AU  - E. V. Vetchanin
AU  - A. R. Valieva
TI  - Analysis of the Force and Torque Arising During the Oscillatory Motion of a Joukowsky Foil in a Fluid
JO  - Russian journal of nonlinear dynamics
PY  - 2024
SP  - 79
EP  - 93
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2024_20_1_a4/
LA  - en
ID  - ND_2024_20_1_a4
ER  - 
%0 Journal Article
%A E. V. Vetchanin
%A A. R. Valieva
%T Analysis of the Force and Torque Arising During the Oscillatory Motion of a Joukowsky Foil in a Fluid
%J Russian journal of nonlinear dynamics
%D 2024
%P 79-93
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2024_20_1_a4/
%G en
%F ND_2024_20_1_a4
E. V. Vetchanin; A. R. Valieva. Analysis of the Force and Torque Arising During the Oscillatory Motion of a Joukowsky Foil in a Fluid. Russian journal of nonlinear dynamics, Tome 20 (2024) no. 1, pp. 79-93. http://geodesic.mathdoc.fr/item/ND_2024_20_1_a4/

[1] Pis'ma Zh. Tekh. Fiz., 42:17 (2016), 9–19 (Russian) | DOI

[2] Borisov, A. V., Mamaev, I. S., and Vetchanin, E. V., “Self-Propulsion of a Smooth Body in a Viscous Fluid under Periodic Oscillations of a Rotor and Circulation”, Regul. Chaotic Dyn., 23:7–8 (2018), 850–874 | DOI | MR | Zbl

[3] Mat. Sb., 28:1 (1911), 120–166 (Russian) | MR

[4] Chaplygin, S. A., “On the Action of a Plane-Parallel Air Flow upon a Cylindrical Wing Moving within It”, The Selected Works on Wing Theory of Sergei A. Chaplygin, Garbell Research Foundation, San Francisco, 1956, 42–72 | MR

[5] Giesing, J. P., “Nonlinear Two-Dimensional Unsteady Potential Flow with Lift”, J. Aircraft, 5:2 (1968), 135–143 | DOI

[6] Jasak, H., Error Analysis and Estimation for the Finite Volume Method with Applications to Fluid Flows, PhD Dissertation, Imperial College London (University of London), London, UK, 1996, 396 pp.

[7] Karavaev, Yu. L., Klekovkin, A. V., Mamaev, I. S., Tenenev, V. A., and Vetchanin, E. V., “Simple Physical Model for Control of an Propellerless Aquatic Robot”, J. Mechanisms Robotics, 14:1 (2022), 011007, 11 pp. | DOI | MR

[8] Kirchhoff, G., Vorlesungen über mathematische Physik: Vol. 1. Mechanik, Teubner, Leipzig, 1876, 466 pp.

[9] Kochin, N. E., Kibel, I. A., and Roze, N. V., Theoretical Hydrodynamics, Wiley, New York, 1964, 583 pp.

[10] Korotkin, A. I., Added Masses of Ship Structures, v. 88, Fluid Mech. Appl., Springer, Dordrecht, 2009, xii, 392 pp.

[11] Kutta, W. M., “Auftriebskräfte in strömenden Flüssigkeiten”, Illustr. aeronaut. Mitteilungen, 6 (1902), 133–135

[12] Lavrentiev, M. A. and Shabat, B. V., Methods of the Theory of Function of Complex Variable, Nauka, Moscow, 1987, 544 pp. (Russian) | MR

[13] Mougin, G. and Magnaudet, J., “The Generalized Kirchhoff Equations and Their Application to the Interaction between a Rigid Body and an Arbitrary Time-Dependent Viscous Flow”, Int. J. Multiph. Flow, 28:11 (2002), 1837–1851 | DOI | Zbl

[14] Mason, R. J., Fluid Locomotion and Trajectory Planning for Shape-Changing Robots, PhD Dissertation, California Institute of Technology, Pasadena, Calif., USA, 2003, 264 pp.

[15] Michelin, S. and Llewellyn Smith, S. G., “An Unsteady Point Vortex Method for Coupled Fluid-Solid Problems”, Theor. Comput. Fluid Dyn., 23:2 (2009), 127–153 | DOI | Zbl

[16] Sedov, L. I., Two-Dimensional Problems in Hydrodynamics and Aerodynamics, Wiley, New York, 1965, 427 pp. | MR | Zbl

[17] Streitlien, K., A Simulation Procedure for Vortex Flow over an Oscillating Wing, Technical Report, MITSG 94-7, MIT Sea Grant College Program, MIT, Cambridge, Mass., 1994, 31 pp.

[18] Streitlien, K. and Triantafyllou, M. S., “Force and Moment on a Joukowski Profile in the Presence of Point Vortices”, AIAA J., 33:4 (1995), 603–610 | DOI | Zbl

[19] Tallapragada, P., “A Swimming Robot with an Internal Rotor As a Nonholonomic System”, Proc. of the American Control Conf. (ACC, Chicago, Ill., Jul 2015), 657–662

[20] Xiong, Z., Su, Y., and Lipson, H., “Fast Untethered Soft Robotic Crawler with Elastic Instability”, Proc. of the IEEE Internat. Conf. on Robotics and Automation (ICRA, London, UK, 2023), 2606–2612