Control of a Spherical Robot with a Nonholonomic Omniwheel Hinge Inside
Russian journal of nonlinear dynamics, Tome 20 (2024) no. 1, pp. 179-193.

Voir la notice de l'article provenant de la source Math-Net.Ru

This study investigates the rolling along the horizontal plane of two coupled rigid bodies: a spherical shell and a dynamically asymmetric rigid body which rotates around the geomet- ric center of the shell. The inner body is in contact with the shell by means of omniwheels. A complete system of equations of motion for an arbitrary number of omniwheels is constructed. The possibility of controlling the motion of this mechanical system along a given trajectory by controlling the angular velocities of omniwheels is investigated. The cases of two omniwheels and three omniwheels are studied in detail. It is shown that two omniwheels are not enough to control along any given curve. It is necessary to have three or more omniwheels. The quaternion approach is used to study the dynamics of the system.
Keywords: dynamics, control, spherical robot, omniwheel, nonholonomic hinge, trajectory
Mots-clés : quaternion
@article{ND_2024_20_1_a11,
     author = {E. A. Mikishanina},
     title = {Control of a {Spherical} {Robot} with a {Nonholonomic} {Omniwheel} {Hinge} {Inside}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {179--193},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2024_20_1_a11/}
}
TY  - JOUR
AU  - E. A. Mikishanina
TI  - Control of a Spherical Robot with a Nonholonomic Omniwheel Hinge Inside
JO  - Russian journal of nonlinear dynamics
PY  - 2024
SP  - 179
EP  - 193
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2024_20_1_a11/
LA  - en
ID  - ND_2024_20_1_a11
ER  - 
%0 Journal Article
%A E. A. Mikishanina
%T Control of a Spherical Robot with a Nonholonomic Omniwheel Hinge Inside
%J Russian journal of nonlinear dynamics
%D 2024
%P 179-193
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2024_20_1_a11/
%G en
%F ND_2024_20_1_a11
E. A. Mikishanina. Control of a Spherical Robot with a Nonholonomic Omniwheel Hinge Inside. Russian journal of nonlinear dynamics, Tome 20 (2024) no. 1, pp. 179-193. http://geodesic.mathdoc.fr/item/ND_2024_20_1_a11/

[1] Bizyaev, I. A., Borisov, A. V., and Mamaev, I. S., “The Dynamics of Nonholonomic Systems Consisting of a Spherical Shell with a Moving Rigid Body Inside”, Regul. Chaotic Dyn., 19:2 (2014), 198–213 | DOI | MR | Zbl

[2] Borisov, A. V. and Mikishanina, E. A., “Two Nonholonomic Chaotic Systems: Part 2. On the Rolling of a Nonholonomic Bundle of Two Bodies”, Regul. Chaotic Dyn., 25:4 (2020), 392–400 | DOI | MR | Zbl

[3] Suslov, G. K., Theoretical Mechanics, Gostekhizdat, Moscow, 1946, 655 pp. (Russian)

[4] Vagner, V. V., “A Geometric Interpretation of Nonholonomic Dynamical Systems”, Tr. Semin. Vectorn. Tenzorn. Anal., 1941, no. 5, 301–327 (Russian) | MR | Zbl

[5] Nelin. Dinam., 9:1 (2013), 51–58 (Russian) | DOI | DOI | MR | Zbl

[6] Borisov, A. V. and Mamaev, I. S., “Two Non-Holonomic Integrable Systems of Coupled Rigid Bodies”, Nelin. Dinam., 7:3 (2011), 559–568 (Russian) | DOI

[7] Moskvin, A. Yu., “Chaplygin's Ball with a Gyrostat: Singular Solutions”, Nelin. Dinam., 5:3 (2009), 345–356 (Russian) | DOI

[8] Borisov, A. V., Kilin, A. A., and Mamaev, I. S., “How to Control Chaplygin's Sphere Using Rotors”, Regul. Chaotic Dyn., 17:3–4 (2012), 258–272 | DOI | MR | Zbl

[9] Bolotin, S. V., “The Problem of Optimal Control of a Chaplygin Ball by Internal Rotors”, Regul. Chaotic Dyn., 17:6 (2012), 559–570 | DOI | MR | Zbl

[10] Svinin, M., Morinaga, A., and Yamamoto, M., “On the Dynamic Model and Motion Planning for a Spherical Rolling Robot Actuated by Orthogonal Internal Rotors”, Regul. Chaotic Dyn., 18:1–2 (2013), 126–143 | DOI | MR | Zbl

[11] Svinin, M., Morinaga, A., and Yamamoto, M., “An Analysis of the Motion Planning Problem for a Spherical Rolling Robot Driven by Internal Rotors”, IEEE/RSJ Internat. Conf. on Intelligent Robots and Systems (Vilamoura-Algarve, Portugal, Oct 7–12, 2012), 414–419

[12] Klekovkin, A. V., Karavaev, Y. L., Mamaev, I. S. The Control of an Aquatic Robot by a Periodic Rotation of the Internal Flywheel, Nelin. Dinam., 19:2 (2023), 265–279 | DOI | MR

[13] Ivanova, T. B. and Pivovarova, E. N., “Dynamics and Control of a Spherical Robot with an Axisymmetric Pendulum Actuator”, Nelin. Dinam., 9:3 (2013), 507–520 (Russian) | DOI | MR

[14] Dokl. Akad. Nauk, 481:3 (2018), 258–263 (Russian) | DOI | MR

[15] Teor. Mat. Fiz., 211:2 (2022), 281–294 (Russian) | DOI | DOI | MR | Zbl

[16] Mikishanina, E. A., “Motion Control of a Spherical Robot with a Pendulum Actuator for Pursuing a Target”, Russian J. Nonlinear Dyn., 18:5 (2022), 899–913 | MR

[17] Kilin, A. A., Ivanova, T. B., and Pivovarova, E. N., “Stabilization of Steady Rotations of a Spherical Robot on a Vibrating Base Using Feedback”, Regul. Chaotic Dyn., 28:6 (2023), 888–905 | DOI | MR | Zbl

[18] Karavaev, Yu. L. and Kilin A. A., “The Dynamics and Control of a Spherical Robot with an Internal Omniwheel Platform”, Nelin. Dinam., 11:1 (2015), 187–204 (Russian) | DOI | MR | Zbl

[19] Nelin. Dinam., 11:2 (2015), 319–327 (Russian) | DOI | DOI | MR | Zbl

[20] Saypulaev, G. R., Adamov, B. I., and Kobrin, A. I., “Comparative Analysis of the Dynamics of a Spherical Robot with a Balanced Internal Platform Taking into Account Different Models of Contact Friction”, Russian J. Nonlinear Dyn., 18:5 (2022), 793–805 | MR

[21] Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2022, no. 6, 46–51 (Russian) | DOI | DOI | Zbl

[22] Hogan, F. R. and Forbes, J. R., “Modeling of Spherical Robots Rolling on Generic Surfaces”, Multibody Syst. Dyn., 35:1 (2015), 91–109 | DOI | MR | Zbl

[23] Kozlov, V. V., “The Dynamics of Systems with Servoconstraints: 1”, Regul. Chaotic Dyn., 20:3 (2015), 205–224 | DOI | MR | Zbl

[24] Borisov, A. V. and Mamaev, I. S., Rigid Body Dynamics: Hamiltonian Methods, Integrability, Chaos, R Dynamics, Institute of Computer Science, Izhevsk, 2005, 576 pp. (Russian) | MR

[25] Kilin, A. A., Karavaev, Yu. L., and Klekovkin, A. V., “Kinematic Control of a High Manoeuvrable Mobile Spherical Robot with Internal Omni-Wheeled Platform”, Nelin. Dinam., 10:1 (2014), 113–126 (Russian) | DOI | MR | Zbl

[26] Borisov, A. V., Kilin, A. A., Mamaev, I. S., and Bizyaev, I. A., Selected Problems of Nonholonomic Mechanics, R Dynamics, Institute of Computer Science, Izhevsk, 2016, 882 pp. (Russian) | MR

[27] Appel, P., Traité de mécanique rationnelle: Vol. 2. Dynamique des systèmes. Mécanique analytique, 6th ed., Gauthier-Villars, Paris, 1953, 584 pp.