Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2024_20_1_a11, author = {E. A. Mikishanina}, title = {Control of a {Spherical} {Robot} with a {Nonholonomic} {Omniwheel} {Hinge} {Inside}}, journal = {Russian journal of nonlinear dynamics}, pages = {179--193}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2024_20_1_a11/} }
E. A. Mikishanina. Control of a Spherical Robot with a Nonholonomic Omniwheel Hinge Inside. Russian journal of nonlinear dynamics, Tome 20 (2024) no. 1, pp. 179-193. http://geodesic.mathdoc.fr/item/ND_2024_20_1_a11/
[1] Bizyaev, I. A., Borisov, A. V., and Mamaev, I. S., “The Dynamics of Nonholonomic Systems Consisting of a Spherical Shell with a Moving Rigid Body Inside”, Regul. Chaotic Dyn., 19:2 (2014), 198–213 | DOI | MR | Zbl
[2] Borisov, A. V. and Mikishanina, E. A., “Two Nonholonomic Chaotic Systems: Part 2. On the Rolling of a Nonholonomic Bundle of Two Bodies”, Regul. Chaotic Dyn., 25:4 (2020), 392–400 | DOI | MR | Zbl
[3] Suslov, G. K., Theoretical Mechanics, Gostekhizdat, Moscow, 1946, 655 pp. (Russian)
[4] Vagner, V. V., “A Geometric Interpretation of Nonholonomic Dynamical Systems”, Tr. Semin. Vectorn. Tenzorn. Anal., 1941, no. 5, 301–327 (Russian) | MR | Zbl
[5] Nelin. Dinam., 9:1 (2013), 51–58 (Russian) | DOI | DOI | MR | Zbl
[6] Borisov, A. V. and Mamaev, I. S., “Two Non-Holonomic Integrable Systems of Coupled Rigid Bodies”, Nelin. Dinam., 7:3 (2011), 559–568 (Russian) | DOI
[7] Moskvin, A. Yu., “Chaplygin's Ball with a Gyrostat: Singular Solutions”, Nelin. Dinam., 5:3 (2009), 345–356 (Russian) | DOI
[8] Borisov, A. V., Kilin, A. A., and Mamaev, I. S., “How to Control Chaplygin's Sphere Using Rotors”, Regul. Chaotic Dyn., 17:3–4 (2012), 258–272 | DOI | MR | Zbl
[9] Bolotin, S. V., “The Problem of Optimal Control of a Chaplygin Ball by Internal Rotors”, Regul. Chaotic Dyn., 17:6 (2012), 559–570 | DOI | MR | Zbl
[10] Svinin, M., Morinaga, A., and Yamamoto, M., “On the Dynamic Model and Motion Planning for a Spherical Rolling Robot Actuated by Orthogonal Internal Rotors”, Regul. Chaotic Dyn., 18:1–2 (2013), 126–143 | DOI | MR | Zbl
[11] Svinin, M., Morinaga, A., and Yamamoto, M., “An Analysis of the Motion Planning Problem for a Spherical Rolling Robot Driven by Internal Rotors”, IEEE/RSJ Internat. Conf. on Intelligent Robots and Systems (Vilamoura-Algarve, Portugal, Oct 7–12, 2012), 414–419
[12] Klekovkin, A. V., Karavaev, Y. L., Mamaev, I. S. The Control of an Aquatic Robot by a Periodic Rotation of the Internal Flywheel, Nelin. Dinam., 19:2 (2023), 265–279 | DOI | MR
[13] Ivanova, T. B. and Pivovarova, E. N., “Dynamics and Control of a Spherical Robot with an Axisymmetric Pendulum Actuator”, Nelin. Dinam., 9:3 (2013), 507–520 (Russian) | DOI | MR
[14] Dokl. Akad. Nauk, 481:3 (2018), 258–263 (Russian) | DOI | MR
[15] Teor. Mat. Fiz., 211:2 (2022), 281–294 (Russian) | DOI | DOI | MR | Zbl
[16] Mikishanina, E. A., “Motion Control of a Spherical Robot with a Pendulum Actuator for Pursuing a Target”, Russian J. Nonlinear Dyn., 18:5 (2022), 899–913 | MR
[17] Kilin, A. A., Ivanova, T. B., and Pivovarova, E. N., “Stabilization of Steady Rotations of a Spherical Robot on a Vibrating Base Using Feedback”, Regul. Chaotic Dyn., 28:6 (2023), 888–905 | DOI | MR | Zbl
[18] Karavaev, Yu. L. and Kilin A. A., “The Dynamics and Control of a Spherical Robot with an Internal Omniwheel Platform”, Nelin. Dinam., 11:1 (2015), 187–204 (Russian) | DOI | MR | Zbl
[19] Nelin. Dinam., 11:2 (2015), 319–327 (Russian) | DOI | DOI | MR | Zbl
[20] Saypulaev, G. R., Adamov, B. I., and Kobrin, A. I., “Comparative Analysis of the Dynamics of a Spherical Robot with a Balanced Internal Platform Taking into Account Different Models of Contact Friction”, Russian J. Nonlinear Dyn., 18:5 (2022), 793–805 | MR
[21] Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2022, no. 6, 46–51 (Russian) | DOI | DOI | Zbl
[22] Hogan, F. R. and Forbes, J. R., “Modeling of Spherical Robots Rolling on Generic Surfaces”, Multibody Syst. Dyn., 35:1 (2015), 91–109 | DOI | MR | Zbl
[23] Kozlov, V. V., “The Dynamics of Systems with Servoconstraints: 1”, Regul. Chaotic Dyn., 20:3 (2015), 205–224 | DOI | MR | Zbl
[24] Borisov, A. V. and Mamaev, I. S., Rigid Body Dynamics: Hamiltonian Methods, Integrability, Chaos, R Dynamics, Institute of Computer Science, Izhevsk, 2005, 576 pp. (Russian) | MR
[25] Kilin, A. A., Karavaev, Yu. L., and Klekovkin, A. V., “Kinematic Control of a High Manoeuvrable Mobile Spherical Robot with Internal Omni-Wheeled Platform”, Nelin. Dinam., 10:1 (2014), 113–126 (Russian) | DOI | MR | Zbl
[26] Borisov, A. V., Kilin, A. A., Mamaev, I. S., and Bizyaev, I. A., Selected Problems of Nonholonomic Mechanics, R Dynamics, Institute of Computer Science, Izhevsk, 2016, 882 pp. (Russian) | MR
[27] Appel, P., Traité de mécanique rationnelle: Vol. 2. Dynamique des systèmes. Mécanique analytique, 6th ed., Gauthier-Villars, Paris, 1953, 584 pp.