Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2024_20_1_a0, author = {M. V. Gasanov and A. G. Gulkanov and K. A. Modestov}, title = {Analytical {Solution} of the {Rayleigh} {\textendash} {Plesset} {Equation}}, journal = {Russian journal of nonlinear dynamics}, pages = {3--13}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2024_20_1_a0/} }
TY - JOUR AU - M. V. Gasanov AU - A. G. Gulkanov AU - K. A. Modestov TI - Analytical Solution of the Rayleigh – Plesset Equation JO - Russian journal of nonlinear dynamics PY - 2024 SP - 3 EP - 13 VL - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2024_20_1_a0/ LA - en ID - ND_2024_20_1_a0 ER -
M. V. Gasanov; A. G. Gulkanov; K. A. Modestov. Analytical Solution of the Rayleigh – Plesset Equation. Russian journal of nonlinear dynamics, Tome 20 (2024) no. 1, pp. 3-13. http://geodesic.mathdoc.fr/item/ND_2024_20_1_a0/
[1] Strutt, J. W. (3rd Baron Rayleigh), “On the Pressure Developed in a Liquid during the Collapse of a Spherical Cavity”, Philos. Mag. (6), 34:200 (1917), 94–98 | DOI
[2] Plesset, M. S. and Prosperetti, A., “Bubble Dynamics and Cavitation”, Annu. Rev. Fluid Mech., 9 (1977), 145–185 | DOI | MR | Zbl
[3] Brennen, Ch. E., Cavitation and Bubble Dynamics, corrected edition of the 1995 original, Cambridge Univ. Press, New York, 2014, xviii, 249 pp. | MR | Zbl
[4] Man, V. H., Li, M. S., Derreumaux, P., and Nguyen, P. H., “Rayleigh – Plesset Equation of the Bubble Stable Cavitation in Water: A Nonequilibrium All-Atom Molecular Dynamics Simulation Study”, J. Chem. Phys., 148:9 (2018), Art. 094505, 8 pp. | DOI | MR
[5] Shah, Y. G., Vacca, A., and Dabiri, S., “Air Release and Cavitation Modeling with a Lumped Parameter Approach Based on the Rayleigh – Plesset Equation: The Case of an External Gear Pump”, Energies, 11:12 (2018), Art. 3472, 28 pp. | DOI
[6] Geng, L., Chen, J., and Escaler, X., “Improvement of Cavitation Mass Transfer Modeling by Including Rayleigh – Plesset Equation Second Order Term”, Eur. J. Mech. B Fluids, 84 (2020), 313–324 | DOI | MR | Zbl
[7] Alehossein, H. and Qin, Z., “Numerical Analysis of Rayleigh – Plesset Equation for Cavitating Water Jets”, Int. J. Numer. Methods Eng., 72:7 (2007), 780–807 | DOI | MR | Zbl
[8] Bogoyavlenskiy, V. A., “Single-Bubble Sonoluminescence: Shape Stability Analysis of Collapse Dynamics in a Semianalytical Approach”, Phys. Rev. E, 62:2 (2000), 2158–2167 | DOI
[9] Lauterborn, W. and Kurz, T., “Physics of Bubble Oscillations”, Rep. Prog. Phys., 73:10 (2010), 106501 | DOI
[10] Doinikov, A. A., Novell, A., Escoffre, J.-M., and Bouakaz, A., “Encapsulated Bubble Dynamics in Imaging and Therapy”, Bubble Dynamics and Shock Waves, Shock Wave Science and Technology Reference Library, 8, ed. C. Delale, Springer, Berlin, 2013, 259–289
[11] Obreschkow, D., Bruderer, M., and Farhat, M., “Analytical Approximations for the Collapse of an Empty Spherical Bubble”, Phys. Rev. E, 85:6 (2012), Art. 066303, 4 pp. | DOI
[12] Amore, P. and Fernández, F. M., “Mathematical Analysis of Recent Analytical Approximations to the Collapse of an Empty Spherical Bubble”, J. Chem. Phys., 138:8 (2013), Art. 084511, 3 pp. | DOI
[13] Kudryashov, N. A. and Sinelshchikov, D. I., “Analytical Solutions of the Rayleigh Equation for Empty and Gas-Filled Bubble”, J. Phys. A, 47:40 (2014), Art. 405202, 10 pp. | DOI | MR
[14] Kudryashov, N. A. and Sinelshchikov, D. I., “Analytical Solutions for Problems of Bubble Dynamics”, Phys. Lett. A, 379:8 (2015), 798–802 | DOI | MR
[15] Kudryashov, N. A. and Sinelshchikov, D. I., “On the Connection of the Quadratic Liénard Equation with an Equation for the Elliptic Functions”, Regul. Chaotic Dyn., 20:4 (2015), 486–496 | DOI | MR | Zbl