Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2023_19_4_a2, author = {H. D. Long and N. A. Dudarenko}, title = {Adaptive {Compensation} for {Unknown} {External}}, journal = {Russian journal of nonlinear dynamics}, pages = {507--519}, publisher = {mathdoc}, volume = {19}, number = {4}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2023_19_4_a2/} }
H. D. Long; N. A. Dudarenko. Adaptive Compensation for Unknown External. Russian journal of nonlinear dynamics, Tome 19 (2023) no. 4, pp. 507-519. http://geodesic.mathdoc.fr/item/ND_2023_19_4_a2/
[1] Dorf, R. C. and Bishop, R. H., Modern Control Systems, 14th ed., Pearson, New York, 2021, 1024 pp.
[2] Bloch, A. M., Chang, D. E., Leonard, N. E., and Marsden, J. E., “Controlled Lagrangians and the Stabilization of Mechanical Systems: 2. Potential Shaping”, IEEE Trans. Automat. Contr., 46:10 (2001), 1556–1571 | DOI | Zbl
[3] Angeli, D., “Almost Global Stabilization of the Inverted Pendulum via Continuous State Feedback”, Automatica, 37:7 (2001), 1103–1108 | DOI | Zbl
[4] Dang, P. and Lewis, F. L., “Controller for Swing-Up and Balance of Single Inverted Pendulum Using SDRE-Based Solution”, Proc. of the 31st Annual Conf. of IEEE Industrial Electronics Society (IECON, Raleigh, NC, USA, Nov 2005), 6 pp.
[5] Prikl. Mat. Mekh., 80:1 (2016), 24–33 (Russian) | DOI | MR | Zbl
[6] Åström, K. J. and Wittenmark, B., Adaptive Control, 2nd ed., Dover, New York, 2008, 590 pp.
[7] Formalskii, A. M., Stabilization and Motion Control of Unstable Objects, Stud. Math. Phys., 33, de Gruyter, Berlin, 2015, 239 pp. | MR
[8] Grigoriev, V. V., Boykov, V. I., Paramonov, A. V., and Bystrov, S. V., Design of Control System Regulators, ITMO Univ., St. Petersburg, 2021, 95 pp. (Russian)
[9] Nikiforov, V. and Gerasimov, D., Adaptive Regulation: Reference Tracking and Disturbance Rejection, Springer, Cham, 2022, xvi, 358 pp. | Zbl
[10] Bobtsov, A. A., Nikiforov, V. O., and Pyrkin, A. A., Adaptive Control of Systems with Disturbances, ITMO Univ., St. Petersburg, 2015, 126 pp. (Russian)
[11] Long, H. D. and Dudarenko, N. A., “Analysis of a Cart-Inverted Pendulum System with Harmonic Disturbances Based on Its Criterion Matrix”, Mekhatronika Avtom. Upr., 23:3 (2022), 146–151 | DOI
[12] Prasad, L. B., Tyagi, B., and Gupta, H. O., “Modelling and Simulation for Optimal Control of Nonlinear Inverted Pendulum Dynamical System Using PID Controller and LQR”, Proc. of the 6th Asia Modelling Symposium (Bali, Indonesia, 2012), 138–143
[13] Prasad, L. B., Tyagi, B., and Gupta, H. O., “Optimal Control of Nonlinear Inverted Pendulum System Using PID Controller and LQR: Performance Analysis without and with Disturbance Input”, Int. J. Autom. Comput., 11:6 (2014), 661–670 | DOI
[14] Siradjuddin, I., Setiawan, B., Fahmi, A., Amalia, Z., and Rohadi, E., “State Space Control Using LQR Method for a Cart-Inverted Pendulum Linearised Model”, Int. J. Mech. Mechatron. Eng., 17:1 (2017), 119–126