Adaptive Compensation for Unknown External
Russian journal of nonlinear dynamics, Tome 19 (2023) no. 4, pp. 507-519.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, an adaptive compensator for unknown external disturbances for an inverted pendulum based on the internal model principle is designed. The inverted pendulum is a typical system that has many applications in social life, such as missile launchers, pendubots, human walking and segways, and so on. Furthermore, the inverted pendulum is a high-order nonlinear system, and its parameters are difficult to determine accurately. The physical constraints lead to the complexity of its control design. Besides, there are some unknown external disturbances that affect the inverted pendulum when it operates. The designed adaptive compensation ensures the outputs of the system’s convergence to the desired values while also ensuring a stable system with variable parameters and unknown disturbances. The simulation results are illustrated and compared with the linear quadratic regulator (LQR) controller to show the effectiveness of the proposed compensator.
Keywords: adaptive control, unknown external disturbances, inverted pendulum, internal model principle, linear quadratic regulator
@article{ND_2023_19_4_a2,
     author = {H. D. Long and N. A. Dudarenko},
     title = {Adaptive {Compensation} for {Unknown} {External}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {507--519},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2023_19_4_a2/}
}
TY  - JOUR
AU  - H. D. Long
AU  - N. A. Dudarenko
TI  - Adaptive Compensation for Unknown External
JO  - Russian journal of nonlinear dynamics
PY  - 2023
SP  - 507
EP  - 519
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2023_19_4_a2/
LA  - en
ID  - ND_2023_19_4_a2
ER  - 
%0 Journal Article
%A H. D. Long
%A N. A. Dudarenko
%T Adaptive Compensation for Unknown External
%J Russian journal of nonlinear dynamics
%D 2023
%P 507-519
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2023_19_4_a2/
%G en
%F ND_2023_19_4_a2
H. D. Long; N. A. Dudarenko. Adaptive Compensation for Unknown External. Russian journal of nonlinear dynamics, Tome 19 (2023) no. 4, pp. 507-519. http://geodesic.mathdoc.fr/item/ND_2023_19_4_a2/

[1] Dorf, R. C. and Bishop, R. H., Modern Control Systems, 14th ed., Pearson, New York, 2021, 1024 pp.

[2] Bloch, A. M., Chang, D. E., Leonard, N. E., and Marsden, J. E., “Controlled Lagrangians and the Stabilization of Mechanical Systems: 2. Potential Shaping”, IEEE Trans. Automat. Contr., 46:10 (2001), 1556–1571 | DOI | Zbl

[3] Angeli, D., “Almost Global Stabilization of the Inverted Pendulum via Continuous State Feedback”, Automatica, 37:7 (2001), 1103–1108 | DOI | Zbl

[4] Dang, P. and Lewis, F. L., “Controller for Swing-Up and Balance of Single Inverted Pendulum Using SDRE-Based Solution”, Proc. of the 31st Annual Conf. of IEEE Industrial Electronics Society (IECON, Raleigh, NC, USA, Nov 2005), 6 pp.

[5] Prikl. Mat. Mekh., 80:1 (2016), 24–33 (Russian) | DOI | MR | Zbl

[6] Åström, K. J. and Wittenmark, B., Adaptive Control, 2nd ed., Dover, New York, 2008, 590 pp.

[7] Formalskii, A. M., Stabilization and Motion Control of Unstable Objects, Stud. Math. Phys., 33, de Gruyter, Berlin, 2015, 239 pp. | MR

[8] Grigoriev, V. V., Boykov, V. I., Paramonov, A. V., and Bystrov, S. V., Design of Control System Regulators, ITMO Univ., St. Petersburg, 2021, 95 pp. (Russian)

[9] Nikiforov, V. and Gerasimov, D., Adaptive Regulation: Reference Tracking and Disturbance Rejection, Springer, Cham, 2022, xvi, 358 pp. | Zbl

[10] Bobtsov, A. A., Nikiforov, V. O., and Pyrkin, A. A., Adaptive Control of Systems with Disturbances, ITMO Univ., St. Petersburg, 2015, 126 pp. (Russian)

[11] Long, H. D. and Dudarenko, N. A., “Analysis of a Cart-Inverted Pendulum System with Harmonic Disturbances Based on Its Criterion Matrix”, Mekhatronika Avtom. Upr., 23:3 (2022), 146–151 | DOI

[12] Prasad, L. B., Tyagi, B., and Gupta, H. O., “Modelling and Simulation for Optimal Control of Nonlinear Inverted Pendulum Dynamical System Using PID Controller and LQR”, Proc. of the 6th Asia Modelling Symposium (Bali, Indonesia, 2012), 138–143

[13] Prasad, L. B., Tyagi, B., and Gupta, H. O., “Optimal Control of Nonlinear Inverted Pendulum System Using PID Controller and LQR: Performance Analysis without and with Disturbance Input”, Int. J. Autom. Comput., 11:6 (2014), 661–670 | DOI

[14] Siradjuddin, I., Setiawan, B., Fahmi, A., Amalia, Z., and Rohadi, E., “State Space Control Using LQR Method for a Cart-Inverted Pendulum Linearised Model”, Int. J. Mech. Mechatron. Eng., 17:1 (2017), 119–126