Nonconservative Cascades in a Shell Model of Turbulence
Russian journal of nonlinear dynamics, Tome 19 (2023) no. 3, pp. 321-331.

Voir la notice de l'article provenant de la source Math-Net.Ru

Developed turbulent flows in which the intervention of external forces is fundamentally important at scales where the inertial range should exist are quite common. Then the cascade processes are not conservative any more and, therefore, it is necessary to adequately describe the external forces acting in the whole range of scales. If the work of these forces has a power law scaling, then one can assume that the integral of motion changes and the preserving value becomes a quadratic quantity, which includes the dependence on the scale. We develop this idea within the framework of shell models of turbulence. We show that, in terms of nonconservative cascades, one can describe various situations, including (as a particular case) the Obukhov – Bolgiano scaling proposed for turbulence in a stratified medium and for helical turbulence with a helicity injection distributed along the spectrum.
Keywords: inertial range, nonconservative cascades, shell models.
Mots-clés : turbulence
@article{ND_2023_19_3_a2,
     author = {P. Frick and A. Shestakov},
     title = {Nonconservative {Cascades} in a {Shell} {Model} of {Turbulence}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {321--331},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2023_19_3_a2/}
}
TY  - JOUR
AU  - P. Frick
AU  - A. Shestakov
TI  - Nonconservative Cascades in a Shell Model of Turbulence
JO  - Russian journal of nonlinear dynamics
PY  - 2023
SP  - 321
EP  - 331
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2023_19_3_a2/
LA  - en
ID  - ND_2023_19_3_a2
ER  - 
%0 Journal Article
%A P. Frick
%A A. Shestakov
%T Nonconservative Cascades in a Shell Model of Turbulence
%J Russian journal of nonlinear dynamics
%D 2023
%P 321-331
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2023_19_3_a2/
%G en
%F ND_2023_19_3_a2
P. Frick; A. Shestakov. Nonconservative Cascades in a Shell Model of Turbulence. Russian journal of nonlinear dynamics, Tome 19 (2023) no. 3, pp. 321-331. http://geodesic.mathdoc.fr/item/ND_2023_19_3_a2/

[1] Dokl. Akad. Nauk SSSR, 30:4 (1941), 299–303 (Russian) | DOI | MR | Zbl

[2] Frisch, U., Turbulence: The Legacy of A. N. Kolmogorov, Cambridge Univ. Press, Cambridge, 1995, 312 pp. | MR | Zbl

[3] Frick, P., Turbulence: Approaches and Models, R Dynamics, Institute of Computer Science, Izhevsk, 2010, 332 pp. (Russian)

[4] Moffatt, H., “The Degree of Knottedness of Tangled Vortex Lines”, J. Fluid Mech., 35:1 (1969), 117–129 | DOI | Zbl

[5] Plunian, F., Teimurazov, A., Stepanov, R., and Verma, M. K., “Inverse Cascade of Energy in Helical Turbulence”, J. Fluid Mech., 895 (2020), A13, 14 pp. | DOI | MR | Zbl

[6] Baj, P., Alves Portela, F., and Carter, D. W., “On the Simultaneous Cascades of Energy, Helicity, and Enstrophy in Incompressible Homogeneous Turbulence”, J. Fluid Mech., 952 (2022), A20, 28 pp. | DOI | MR | Zbl

[7] Stepanov, R., Frick, P., and Mizeva, I., “Cross Helicity and Magnetic Helicity Cascades in MHD Turbulence”, Magnetohydrodynamics, 49:1 (2013), 15–21 | DOI

[8] Obukhov, A. M., “On the Influence of Archimedean Force on Structure of the Turbulent Field in a Turbulent Flow”, Dokl. Akad. Nauk. SSSR, 125:6 (1959), 1246–1248 (Russian) | MR

[9] Bolgiano, R., Jr., “Turbulent Spectra in a Stably Stratified Atmosphere”, J. Geophys. Res., 64:12 (1959), 2226–2229 | DOI

[10] Lohse, D. and Xia, K.-Q., “Small-Scale Properties of Turbulent Rayleigh – Bénard Convection”, Annu. Rev. Fluid Mech., 42:1 (2010), 335–364 | DOI | Zbl

[11] Rosenberg, D., Pouquet, A., Marino, R., and Mininni, P. D., “Evidence for Bolgiano – Obukhov Scaling in Rotating Stratified Turbulence Using High-Resolution Direct Numerical Simulations”, Phys. Fluids, 27:5 (2015), 055105, 19 pp. | DOI

[12] Yakhot, V., “$\frac45$ Kolmogorov Law for Statistically Stationary Turbulence: Application to High-Rayleigh-Number Bénard Convection”, Phys. Rev. Lett., 69:5 (1992), 769–771 | DOI | MR | Zbl

[13] Plunian, F., Stepanov, R., and Frick, P., “Shell Models of Magnetohydrodynamic Turbulence”, Phys. Rep., 523:1 (2013), 1–60 | DOI | MR

[14] Frick, P., Dubrulle, B., and Babiano, A., “Scaling Properties of a Class of Shell Models”, Phys. Rev. E, 51:6 (1995), 5582–5593 | DOI

[15] Prikl. Mat. Mekh., 38:3 (1974), 507–513 | DOI

[16] Bell, T. L. and Nelkin, M., “Time-Dependent Scaling Relations and a Cascade Model of Turbulence”, J. Fluid Mech., 88:2 (1978), 369–391 | DOI | MR | Zbl

[17] Zimin, V. and Hussain, F., “Wavelet Based Model for Small-Scale Turbulence”, Phys. Fluids, 7:12 (1995), 2925–2927 | DOI | MR | Zbl

[18] Stepanov, R. A., Frik, P. G., and Shestakov, A. V., “Spectral Properties of Helical Turbulence”, Fluid Dyn., 44:5 (2009), 658–666 | DOI | MR | Zbl

[19] Stepanov, R., Golbraikh, E., Frick, P., and Shestakov, A., “Hindered Energy Cascade in Highly Helical Isotropic Turbulence”, Phys. Rev. Lett., 115:23 (2015), 234501, 5 pp. | DOI

[20] Melander, M. V., “Helicity Causes Chaos in a Shell Model of Turbulence”, Phys. Rev. Lett., 78:8 (1997), 1456–1459 | DOI

[21] Kadanoff, L., Lohse, D., Wang, J., and Benzi, R., “Scaling and Dissipation in the GOY Shell Model”, Phys. Fluids, 7:3 (1995), 617–629 | DOI | MR | Zbl

[22] Brissaud, A., Frisch, U., Leorat, J., Lesieur, M., and Mazure, A., “Helicity Cascades in Fully Developed Isotropic Turbulence”, Phys. Fluids, 16:8 (1973), 1366–1367 | DOI