The Control of an Aquatic Robot by a Periodic Rotation of the Internal Flywheel
Russian journal of nonlinear dynamics, Tome 19 (2023) no. 2, pp. 265-279

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper presents the design of an aquatic robot actuated by one internal rotor. The robot body has a cylindrical form with a base in the form of a symmetric airfoil with a sharp edge. For this object, equations of motion are presented in the form of Kirchhoff equations for rigid body motion in an ideal fluid, which are supplemented with viscous resistance terms. A prototype of the aquatic robot with an internal rotor is developed. Using this prototype, experimental investigations of motion in a fluid are carried out.
Keywords: aquatic robot
Mots-clés : mobile robot, motion simulation.
@article{ND_2023_19_2_a7,
     author = {A. V. Klekovkin and Yu. L. Karavaev and I. S. Mamaev},
     title = {The {Control} of an {Aquatic} {Robot} by a {Periodic} {Rotation} of the {Internal} {Flywheel}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {265--279},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2023_19_2_a7/}
}
TY  - JOUR
AU  - A. V. Klekovkin
AU  - Yu. L. Karavaev
AU  - I. S. Mamaev
TI  - The Control of an Aquatic Robot by a Periodic Rotation of the Internal Flywheel
JO  - Russian journal of nonlinear dynamics
PY  - 2023
SP  - 265
EP  - 279
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2023_19_2_a7/
LA  - en
ID  - ND_2023_19_2_a7
ER  - 
%0 Journal Article
%A A. V. Klekovkin
%A Yu. L. Karavaev
%A I. S. Mamaev
%T The Control of an Aquatic Robot by a Periodic Rotation of the Internal Flywheel
%J Russian journal of nonlinear dynamics
%D 2023
%P 265-279
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2023_19_2_a7/
%G en
%F ND_2023_19_2_a7
A. V. Klekovkin; Yu. L. Karavaev; I. S. Mamaev. The Control of an Aquatic Robot by a Periodic Rotation of the Internal Flywheel. Russian journal of nonlinear dynamics, Tome 19 (2023) no. 2, pp. 265-279. http://geodesic.mathdoc.fr/item/ND_2023_19_2_a7/