The Control of an Aquatic Robot by a Periodic Rotation of the Internal Flywheel
Russian journal of nonlinear dynamics, Tome 19 (2023) no. 2, pp. 265-279.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper presents the design of an aquatic robot actuated by one internal rotor. The robot body has a cylindrical form with a base in the form of a symmetric airfoil with a sharp edge. For this object, equations of motion are presented in the form of Kirchhoff equations for rigid body motion in an ideal fluid, which are supplemented with viscous resistance terms. A prototype of the aquatic robot with an internal rotor is developed. Using this prototype, experimental investigations of motion in a fluid are carried out.
Keywords: aquatic robot
Mots-clés : mobile robot, motion simulation.
@article{ND_2023_19_2_a7,
     author = {A. V. Klekovkin and Yu. L. Karavaev and I. S. Mamaev},
     title = {The {Control} of an {Aquatic} {Robot} by a {Periodic} {Rotation} of the {Internal} {Flywheel}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {265--279},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2023_19_2_a7/}
}
TY  - JOUR
AU  - A. V. Klekovkin
AU  - Yu. L. Karavaev
AU  - I. S. Mamaev
TI  - The Control of an Aquatic Robot by a Periodic Rotation of the Internal Flywheel
JO  - Russian journal of nonlinear dynamics
PY  - 2023
SP  - 265
EP  - 279
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2023_19_2_a7/
LA  - en
ID  - ND_2023_19_2_a7
ER  - 
%0 Journal Article
%A A. V. Klekovkin
%A Yu. L. Karavaev
%A I. S. Mamaev
%T The Control of an Aquatic Robot by a Periodic Rotation of the Internal Flywheel
%J Russian journal of nonlinear dynamics
%D 2023
%P 265-279
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2023_19_2_a7/
%G en
%F ND_2023_19_2_a7
A. V. Klekovkin; Yu. L. Karavaev; I. S. Mamaev. The Control of an Aquatic Robot by a Periodic Rotation of the Internal Flywheel. Russian journal of nonlinear dynamics, Tome 19 (2023) no. 2, pp. 265-279. http://geodesic.mathdoc.fr/item/ND_2023_19_2_a7/

[1] Karavaev, Yu. L., Klekovkin, A. V., Mamaev, I. S., Tenenev, V. A., Vetchanin, E. V., “Simple physical model for control of an propellerless aquatic robot”, J. Mechanisms Robotics, 14:1 (2021), 011007, 11 pp. | DOI

[2] Klekovkin, A. V., “Modeling motion of aquatic robot controlling by implemented of internal rotor rotating”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 30:4 (2020), 645–656 (Russian) | DOI | MR

[3] Klenov, A. I., Kilin, A. A., “Influence of vortex structures on the controlled motion of an above-water screwless robot”, Regular and Chaotic Dynamics, 21:7–8 (2016), 927–938 | DOI | MR | Zbl

[4] Kilin, A. A., Klenov, A. I., Tenenev, V. A., “Controlling the movement of the body using internal masses in a viscous liquid”, Computer Research and Modeling, 10:4 (2018), 445–460 \enlargethispage*{\baselineskip} | DOI

[5] Childress, S., Spagnolie, S. E., Tokieda, T., “A Bug on a Raft: Recoil Locomotion in a Viscous Fluid”, J. Fluid Mech., 669 (2011), 527–556 | DOI | MR | Zbl

[6] Chernousko, F. L., “Motion of a body in a fluid due to attached-link oscillations”, Dokl. Akad. Nauk, 431:1, 46–49 | MR | Zbl

[7] Yegorov, A. G., Zakharova, O. S., “The energy-optimal motion of a vibration-driven robot in a resistive medium”, Journal of Applied Mathematics and Mechanics, 74:4 (2010), 443–451 | DOI | MR

[8] Vetchanin, E. V., Kilin, A. A., “Free and controlled motion of a body with a moving internal mass through a fluid in the presence of circulation around the body”, Doklady Physics, 61:1 (2016), 32–36 | DOI | MR

[9] Mamaev, I. S., Tenenev, V. A., Vetchanin, E. V., “Dynamics of a body with a sharp edge in a viscous fluid”, Russian Journal of Nonlinear Dynamics, 14:4 (2018), 473–494 | MR | Zbl

[10] Vorochaeva (Volkova), L. Y., Jatsun, S. F., “Control of the three-mass robot moving in the liquid environment”, Rus. J. Nonlin. Dyn., 7:4 (2011), 845–857 | MR

[11] Karavaev, Yu. L., Kilin, A. A., Klekovkin, A. V., “Experimental investigations of the controlled motion of a screwless underwater robot”, Regular and Chaotic Dynamics, 21:7–8 (2016), 918–926 | DOI | MR | Zbl

[12] Pollard, B., Tallapragada, P., “An aquatic robot propelled by an internal rotor”, IEEE/ASME Transactions on Mechatronics, 22:2 (2016), 931–939 | DOI

[13] Mamaev, I. S., Bizyaev, I. A., “Dynamics of an unbalanced circular foil and point vortices in an ideal fluid”, Physics of Fluids, 33 (2021), 087119, 18 pp. | DOI | MR

[14] Vetchanin, E. V., Mamaev, I. S., “Numerical analysis of the periodic controls of an aquatic robot”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 32:4 (2022), 1–17 | MR

[15] Klekovkin, A. V., Karavaev, Yu. L., Mamaev, I. S., “Design and control for the underwater robot with internal rotor”, 2021 International Conference “Nonlinearity, Information and Robotics” – IEEE, 2021, 1–5

[16] Kuznetsov S. P., “Plate Falling in a Fluid: Regular and Chaotic Dynamics of Finite-dimensional Models”, Regular and Chaotic Dynamics, 20:3 (2015), 345–382 | DOI | MR | Zbl

[17] Hatsanova, E. M., Tarabukin, I. M., “Experimental determination of resistance forces in a fluid with linear and angular motion of flat blades”, Scientific conference “Summer School of Robotics in Sirius-2022”: Abstracts of student reports (Sochi, June 28 – July 12, 2022), 2022, 63–65 (Russian)

[18] Korotkin, A. I., Added Masses of Ship Structures, Fluid Mech. Appl., 88, Springer, Dordrecht, 2009

[19] Borisov, A. V., Kuznetsov, S. P., Mamaev, I. S., Tenenev, V. A., “Describing the motion of a body with an elliptical cross section in a viscous uncompressible fluid by model equations reconstructed from data processing”, Tech. Phys. Lett., 42:9 (2016), 886–890 | DOI

[20] Klenov A. I., Vetchanin, E. V., Kilin, A. A., “Experimental determination of the added masses by method of towing”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 25:4 (2015), 568–582 (Russian) | DOI