Nonlinear Dynamics of a Microscale Rate Integrating Gyroscope with a Disk Resonator under Parametric Excitation
Russian journal of nonlinear dynamics, Tome 19 (2023) no. 1, pp. 59-89.

Voir la notice de l'article provenant de la source Math-Net.Ru

This article presents an analytical study of the dynamics of a micromechanical integrating gyroscope with a disk resonator. A discrete dynamic model of the resonator is obtained, taking into account the axial anisotropy of its mass and stiffness properties, as well as the action of the electrical control system of oscillations. An analysis of the spectral problem of disk vibrations in the plane is carried out. The nonlinear dynamics of the resonator in the regimes of free and parametrically excited vibrations are investigated. In the mode of parametric oscillations, qualitative dependencies of the gyroscopic drift on the operating voltage, angular velocity and parameters of defects are obtained.
Keywords: MEMS, MRIG, nonlinear dynamics, BAW, parametric excitation.
@article{ND_2023_19_1_a4,
     author = {D. A. Indeitsev and E. V. Zavorotneva and A. V. Lukin and I. A. Popov and V. S. Igumnova},
     title = {Nonlinear {Dynamics} of a {Microscale} {Rate} {Integrating} {Gyroscope} with a {Disk} {Resonator} under {Parametric} {Excitation}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {59--89},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2023_19_1_a4/}
}
TY  - JOUR
AU  - D. A. Indeitsev
AU  - E. V. Zavorotneva
AU  - A. V. Lukin
AU  - I. A. Popov
AU  - V. S. Igumnova
TI  - Nonlinear Dynamics of a Microscale Rate Integrating Gyroscope with a Disk Resonator under Parametric Excitation
JO  - Russian journal of nonlinear dynamics
PY  - 2023
SP  - 59
EP  - 89
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2023_19_1_a4/
LA  - en
ID  - ND_2023_19_1_a4
ER  - 
%0 Journal Article
%A D. A. Indeitsev
%A E. V. Zavorotneva
%A A. V. Lukin
%A I. A. Popov
%A V. S. Igumnova
%T Nonlinear Dynamics of a Microscale Rate Integrating Gyroscope with a Disk Resonator under Parametric Excitation
%J Russian journal of nonlinear dynamics
%D 2023
%P 59-89
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2023_19_1_a4/
%G en
%F ND_2023_19_1_a4
D. A. Indeitsev; E. V. Zavorotneva; A. V. Lukin; I. A. Popov; V. S. Igumnova. Nonlinear Dynamics of a Microscale Rate Integrating Gyroscope with a Disk Resonator under Parametric Excitation. Russian journal of nonlinear dynamics, Tome 19 (2023) no. 1, pp. 59-89. http://geodesic.mathdoc.fr/item/ND_2023_19_1_a4/

[1] Giroskop. Navig., 28:2 (109) (2020), 3–10 (Russian) | DOI | DOI

[2] Pourkamali, S., Zhili Hao, Ayazi, F., “VHF Single Crystal Silicon Capacitive Elliptic Bulk-Mode Disk Resonators: Part 2. Implementation and Characterization”, J. Microelectromech. Syst., 13:6 (2004), 1054–1062 | DOI

[3] Johari, H. and Ayazi, F., “High-Frequency Capacitive Disk Gyroscopes in (100) and (111) Silicon”, 2007 IEEE 20th Internat. Conf. on Micro Electro Mechanical Systems (MEMS, Hyogo, Japan, Jan 2008), 47–50

[4] Johari, H., Shah, J., and Ayazi, F., “High Frequency XYZ-Axis Single-Disk Silicon Gyroscope”, 2008 IEEE 21st Internat. Conf. on Micro Electro Mechanical Systems (MEMS, Tucson, Ariz., Jan 2008), 856–859

[5] Mirjalili, R., Wen, H., Serrano, D. E., and Ayazi, F., “Substrate-Decoupled Silicon Disk Resonators Having Degenerate Gyroscopic Modes with Q in Excess of $1$-Million”, Proc. of the 18th Internat. Conf. on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS, Anchorage, Alaska, Jun 2015), 15–18

[6] Serrano, D. E., Zaman, M. F., Rahafrooz, A., Hrudey, P., Lipka, R., Younkin, D., Nagpal, S., Jafri, I., and Ayazi, F., “Substrate-Decoupled, Bulk-Acoustic Wave Gyroscopes: Design and Evaluation of Next-Generation Environmentally Robust Devices”, Microsyst. Nanoeng., 2 (2016), 16015, 10 pp. | DOI

[7] Serrano, D. E., Lipka, R., Younkin, D., Hrudey, P., Tovera, J., Rahafrooz, A., Zaman, M. F., Nagpal, S., Jafri, I., and Ayazi, F., “Environmentally-Robust High-Performance Tri-Axial Bulk Acoustic Wave Gyroscopes”, 2016 IEEE/ION Position, Location and Navigation Symposium (PLANS, Savannah, Ga., Apr 2016), 5–8 \if0

[8] Serrano, D. E., Lipka, R., Younkin, D., Hrudey, P., Tovera, J., Rahafrooz, A., Zaman, M. F., Nagpal, S., Jafri, I., and Ayazi, F., “Environmentally-Robust High-Performance Tri-Axial Bulk Acoustic Wave Gyroscopes”, 2016 IEEE/ION Position, Location and Navigation Symposium (PLANS, Savannah, Ga., USA, May 2016), 5–8 \fi

[9] Acar, C. and Shkel, A., MEMS Vibratory Gyroscopes: Structural Approaches to Improve Robustness, Springer, New York, 2008, XII, 260 pp.

[10] Challoner, A. D., Ge, H. H., and Liu, J. Y., “Boeing Disc Resonator Gyroscope”, 2014 IEEE/ION Position, Location and Navigation Symposium (PLANS, Monterey, Calif., May 2014), 504–514

[11] Su, T.-H., Nitzan, S. H., Taheri-Tehrani, P., Kline, M. H., Boser, B. E., and Horsley, D. A., “Silicon MEMS Disk Resonator Gyroscope with an Integrated CMOS Analog Front-End”, IEEE Sens. J., 14:10 (2014), 3426–3432 | DOI

[12] HyuckAhn, Ch., Nitzan, S., Ng, E., Hong, V., Yang, Y., Kimbrell, T., Horsley, D., and Kenny, T., “Encapsulated High Frequency (235 kHz), High-Q (100 k) Disk Resonator Gyroscope with Electrostatic Parametric Pump”, Appl. Phys. Lett., 105:24 (2014), 243504, 5 pp. | DOI

[13] HyuckAhn, Ch., Ng, E., Hong, V., Yang, Y., Lee, B., Flader, I., and Kenny, Th., “Mode-Matching of Wineglass Mode Disk Resonator Gyroscope in (100) Single Crystal Silicon”, J. Microelectromech. Syst., 24:2 (2015), 343–350 | DOI

[14] HyuckAhn, Ch., Shin, D. D., Hong, V., Yang, Y., Ng, E. J., Chen, Y., Flader, I. B., and Kenny, Th., “Encapsulated Disk Resonator Gyroscope with Differential Internal Electrodes”, 2016 IEEE 29th Internat. Conf. on Micro Electro Mechanical Systems (MEMS, Shanghai, China, Jan 2016), 962–965

[15] Li, Q., Xiao, D., Zhou, X., Xu, Y., Zhuo, M., Hou, Z., He, K., Zhang, Y., and Wu, X., “$0.04$ Degree-Per-Hour MEMS Disk Resonator Gyroscope with High-Quality Factor (510 k) and Long Decaying Time Constant ($74.9$ s)”, Microsyst. Nanoeng., 4 (2018), 32, 11 pp. | DOI

[16] Zhou, X., Xiao, D., Li, Q., Hou, Zh., He, K., Chen, Zh., Wu, Y., and Wu, X., “Decaying Time Constant Enhanced MEMS Disk Resonator for High Precision Gyroscopic Application”, IEEE ASME Trans. Mechatron., 23:1 (2018), 452–458 | DOI

[17] Li, Q., Xiao, D., Zhou, X., Hou, Zh., Xu, Y., and Wu, X., “Quality Factor Improvement in the Disk Resonator Gyroscope by Optimizing the Spoke Length Distribution”, J. Microelectromech. Syst., 27:3 (2018), 414–423 | DOI

[18] Fan, Q., Lin, Ch., Liu, M., Su, Y., Zhao, W., and Zheng, D., “High Performance MEMS Disk Gyroscope with Force-to-Rebalance Operation Mode”, Proc. IEEE Sensors (Montreal, Canada, Oct 2018), 3 pp.

[19] Bo, F., Guo, Sh., Cheng, M., Yu, L., Zhou, M., Hu, W., Chen, Z., and Xu, D., “A Novel High-Symmetry Cobweb-Like Disk Resonator Gyroscope”, Sensors J., 19 (2019), 10289–10297 | DOI

[20] Ren, X., Zhou, X., Tao, Y., Li, Q., Wu, X., and Xiao, D., “Radially Pleated Disk Resonator for Gyroscopic Application”, J. Microelectromech. Syst., 30:6 (2021), 825–835 | DOI

[21] Giroskop. Navig., 2009, no. 3, 10–22 (Russian) | DOI

[22] Taheri-Tehrani, P., Guerrieri, A., Defoort, M., and Horsley, D., “Mutual $3:1$ Subharmonic Synchronization in a Micromacined Silicon Disk Resonator”, Appl. Phys. Lett., 111:18 (2017), 183505, 5 pp. | DOI

[23] Jie, D., “Simulating the Performance of Ring-Based Coriolis Vibrating Gyroscopic Sensors”, Microsyst. Technol., 25:1 (2018), 139–149 | DOI

[24] Chouvion, B., Mcwilliam, S., and Popov, A., “Effect of Nonlinear Electrostatic Forces on the Dynamic Behaviour of a Capacitive Ring-Based Coriolis Vibrating Gyroscope under Severe Shock”, Mech. Syst. Signal. Process., 106 (2018), 395–412 | DOI

[25] Di Napoli, V., McWilliam, S., and Popov, A. A., “Frequency Splitting in MEMS Ring-Based Coriolis Vibrating Gyroscopes Caused by Support Non-Linearity”, Proceedings, 2:13 (2018), 755, 4 pp.

[26] Maslov, D. and Merkuryev, I., “Increase in the Accuracy of the Parameters Identification for a Vibrating Ring Microgyroscope Operating in the Forced Oscillation Mode with Nonlinearity Taken into Account”, Russian J. Nonlinear Dyn., 14:3 (2018), 377–386 | MR | Zbl

[27] Li, Q., Xiao, D., Zhou, X., Hou, Zh., Zhuo, M., Xu, Y., and Wu, X., “Dynamic Modeling of the Multiring Disk Resonator Gyroscope”, Micromachines, 10:3 (2019), 181, 20 pp. | DOI

[28] Maslov, A. A., Maslova, D., Merkuryev, I., and Podalkov, V. V., “Development of Methods for Identification of Nonlinear Mathematical Model Parameters of Solid-State Wave Gyroscope”, Proc. of the 27th Saint Petersburg Internat. Conf. on Integrated Navigation Systems (ICINS, St. Petersburg, Russia, May 2020), 4 pp.

[29] Flader, I. B., HyuckAhn, Ch., Gerrard, D. D., Ng, E. J., Yang, Y., Hong, V. A., Pavone, M., and Kenny, Th. W., “Autonomous Calibration of MEMS Disk Resonating Gyroscope for Improved Sensor Performance”, 2016 American Control Conference (ACC, Boston, Mass., Jul 2016), 5803–5810

[30] Hu, Zh. and Gallacher, B. J., “Precision Mode Tuning towards a Low Angle Drift MEMS Rate Integrating Gyroscope”, Mechatronics, 56 (2017), 306–317

[31] Hu, Zh. and Gallacher, B. J., “A Mode-Matched Force-Rebalance Control for a MEMS Vibratory Gyroscope”, Sens. Actuator A Phys., 273 (2018), 1–11

[32] Maslov, A. A., Maslov, D. A., Merkuryev, I. V., and Podalkov, V. V., “Methods to Eliminate Nonlinearity of Electrostatic Control Sensors of the Wave Solid-State Gyroscope”, Proc. of the 25th Saint Petersburg Internat. Conf. on Integrated Navigation Systems (ICINS, St. Petersburg, Russia, May 2018), 3 \enlargethispage*{\baselineskip} pp.

[33] Li, Ch., Wen, H., Wisher, S., Norouzpour-Shirazi, A., Lei, J., Chen, H., and Ayazi, F., “An FPGA-Based Interface System for High-Frequency Bulk-Acoustic-Wave Microgyroscopes with In-Run Automatic Mode-Matching”, IEEE Trans. Instrum. Meas., 69:4 (2020), 1783–1793 | DOI

[34] Ruan, Zh., Ding, X., Qin, Zh., Jia, J., and Li, H., “Automatic Mode-Matching Method for MEMS Disk Resonator Gyroscopes Based on Virtual Coriolis Force”, Micromachines, 11:2 (2020), 210, 22 pp. | DOI

[35] Li, Ch., Wen, H., Chen, H., and Ayazi, F., “A Digital Force-to-Rebalance Scheme for High-Frequency Bulk-Acoustic-Wave Micro-Gyroscopes”, Sens. Actuator A Phys., 313 (2020), 112181, 9 pp. | DOI

[36] Liu, J., Yang, Y., Guo, Sh., Fan, B., Xuan, L., and Xu, D., “A Novel Compensation Method for Eliminating Precession Angular-Rate Bias in MEMS Rate-Integrating Gyroscopes”, IEEE Access, 8 (2020), 145611–145619 | DOI

[37] Nitzan, S., Zega, V., Li, M., HyuckAhn, Ch., Corigliano, A., Kenny, Th., and Horsley, D., “Self-Induced Parametric Amplification Arising from Nonlinear Elastic Coupling in a Micromechaical Resonating Disk Gyroscope”, Sci. Rep., 5 (2015), 9036, 6 pp. | DOI

[38] Polunin, P. M. and Shaw, S. W., “Self-Induced Parametric Amplification in Ring Resonating Gyroscopes”, Internat. J. Non-Linear Mech., 94 (2017), 300–308 \itemsep=3pt | DOI

[39] Gallacher, B. J., Hu, Zh., Harish, K. M., Bowles, S., and Grigg, H., “The Application of Parametric Excitation in MEMS Gyroscopes”, Applied Non-Linear Dynamical Systems, Springer Proc. Math. Stat., 93, ed. J. Awrejcewicz, Springer, Cham, 2014, 473–492 | MR

[40] Chen, S. S. H. and Liu, T. M., “Extensional Vibration of Thin Plates of Various Shapes”, J. Acoust. Soc. Am., 58:4 (1975), 828–831 | DOI

[41] Ambati, G., Bell, J. F. W., and Sharp, J. C. K., “In-Plane Vibrations of Annular Rings”, J. Sound Vibration, 47:3 (1976), 415–432 | DOI | Zbl

[42] Farag, N. and Pan, J., “Modal Characteristics of In-Plane Vibration of Circular Plates Clamped at the Outer Edge”, J. Acoust. Soc. Am., 113:4 (2003), 1935–1946 | DOI

[43] Zhili Hao, Pourkamali, S., and Ayazi, F., “VHF Single-Crystal Silicon Elliptic Bulk-Mode Capacitive Disk Resonators-Part: 1. Design and Modeling”, J. Microelectromech. Syst., 13:6 (2004), 1043–1053 | DOI

[44] Bashmal, S. Bhat, R., and Rakheja, S., “In-Plane Free Vibration of Circular Disks Using Characteristic Orthogonal Polynomials in Rayleigh – Ritz Method”, Can. Acoust., 35:3 (2007), 164–165

[45] Park, Ch., “Frequency Equation for the In-Plane Vibration of a Clamped Circular Plate”, J. Sound Vibration, 313:1–2 (2008), 325–333 | DOI

[46] Bashmal, S., Bhat, R., and Rakheja, S., “Frequency Equations for the In-Plane Vibration of Circular Annular Disks”, Adv. Acoust. Vib., 2010 (2010), 501902, 8 pp.

[47] Shi, X., Li, W., and Shi, D., “Free In-Plane Vibrations of Annular Sector Plates with Elastic Boundary Supports”, J. Acoust. Soc. Am., 132:3 (2012), 2067 | DOI

[48] Wei, X. and Seshia, A. A., “Analytical Formulation of Modal Frequency Split in the Elliptical Mode of SCS Micromechanical Disk Resonators”, J. Micromech. Microeng., 24:2 (2014), 025011, 7 pp. | DOI

[49] Izv. Akad. Nauk. Mekh. Tverd. Tela, 2010, no. 4, 138–154 (Russian) | DOI

[50] Sharma, J., Grover, D., and Kaur, D., “Mathematical Modelling and Analysis of Bulk Waves in Rotating Generalized Thermoelastic Media with Voids”, Appl. Math. Model., 35:7 (2011), 3396–3407 | DOI | MR | Zbl

[51] Jani, S. M. H. and Kiani, Y., “Generalized Thermo-Electro-Elasticity of a Piezoelectric Disk Using Lord – Shulman Theory”, J. Therm. Stresses, 43:4 (2020), 473–488 | DOI

[52] Luo, A. and Mote, C., “Nonlinear Vibration of Rotating Thin Disks”, J. Vib. Acoust., 122:4 (2000), 376–383 | DOI

[53] Luo, A., “An Approximate Theory for Geometrically Nonlinear Thin Plates”, Int. J. Solids Struct., 37:51 (2000), 7655–7670 | DOI | MR | Zbl

[54] Lacarbonara, W., Arena, A., and Antman, S. S., “Flexural Vibrations of Nonlinearly Elastic Circular Rings”, Meccanica, 50:3 (2015), 689–705 | DOI | MR | Zbl

[55] Yang, Y., Ng, E. J., Polunin, P. M., Chen, Y., Flader, I. B., Shaw, S. W., Dykman, M. I., and Kenny, Th. W., “Nonlinearity of Degenerately Doped Bulk-Mode Silicon MEMS Resonators”, J. Microelectromech. Syst., 25:5 (2016), 859–869 | DOI

[56] Chorsi, M., Chorsi, H., and Gedney, S., “A Conceptual Study of Microelectromechanical Disk Resonators”, IEEE J. Multiscale Multiphysics Comput. Tech., 2 (2017), 29–37 | DOI

[57] Xianglin, W., Jiao, Y., Chen, Zh., and Ma, W., “Nonlinear Transverse and In-Plane Vibrations of a Thin Rotating Disk”, IFToMM'2018: Proc. of the 10th Internat. Conf. on Rotor Dynamics, Mech. Mach. Sci., 62, eds. K. Cavalca, H. Weber, Springer, Cham, 2019, 135–147 | DOI

[58] Lu, T., Tsouvalas, A., and Metrikine, A., “A High-Order Model for In-Plane Vibrations of Rotating Rings on Elastic Foundation”, J. Sound Vibration, 455 (2019), 118–135 | DOI

[59] Joubert, S., Shatalov, M., and Manzhirov, A., “Bryan's Effect and Isotropic Nonlinear Damping”, J. Sound Vibration, 332:23 (2013), 6169–6176 | DOI

[60] Joubert, S. V., Shatalov, M. Yu., and Spoelstra, H., “On Electronically Restoring an Imperfect Vibratory Gyroscope to an Ideal State”, Mechanics for Materials and Technologies, Adv. Struct. Mater., 46, eds. H. Altenbach, R. Goldstein, E. Murashkin, Springer, Cham, 2017, 231–256 | DOI | MR

[61] Joubert, S. V., Shatalov, M. Yu., Fay, T. H., and Sedebo, G. T., “On Bryan's Law and Anisotropic Nonlinear Damping”, Proc. of the 24th Internat. Conf. on Sound and Vibration (ICSV, London, UK, Jul 2017), 8 pp.

[62] Sedebo, G. T., Joubert, S. V., and Shatalov, M. Yu., “An Analytical Theory for a Three-Dimensional Thick-Disc Thin-Plate Vibratory Gyroscope”, J. Phys. Conf. Ser., 991:1 (2018), 012072, 8 pp. | DOI

[63] Parajuli, M., Sobreviela, G., Pandit, M., Zhang, H., and Seshia, A. A., “Sub-Deg-per-Hour Edge-Anchored Bulk Acoustic Wave Micromachined Disk Gyroscope”, J. Microelectromech. Syst., 30:6 (2021), 836–842 | DOI

[64] Hu, Zh. and Gallacher, B. J., “Effects of Nonlinearity on the Angular Drift Error of an Electrostatic {MEMS} Rate Integrating Gyroscope”, IEEE Sens. J., 19:22 (2019), 10271–10280 | DOI

[65] Daruwalla, A., Wen, H., Mirjalili, R., and Ayazi, F., “Epitaxially-Grown Thick Polysilicon for BAW Disk Resonator Gyroscopes with Very Low Dissipation”, 2018 IEEE Micro Electro Mechanical Systems (MEMS, Belfast, UK, Apr 2018), 1008–1011

[66] Stein, M., “Nonlinear Theory for Plates and Shells including the Effects of Transverse Shearing”, AIAA J., 24:9 (1986), 1537–1544 | DOI | Zbl

[67] Lu, T., Tsouvalas, A., and Metrikine, A. V., “A High-Order Model for In-Plane Vibrations of Rotating Rings on Elastic Foundation”, J. Sound Vibration, 455 (2019), 118–135 | DOI

[68] Polunin, P. M. and Shaw, S. W., “Self-Induced Parametric Amplification in Ring Resonating Gyroscopes”, Internat. J. Non-Linear Mech., 94 (2017), 300–308 | DOI

[69] Joubert, S. V., Shatalov, M. Yu., and Coetzee, Ch. E., “Using Fourier Series to Analyse Mass Imperfections in Vibrtory Gyroscopes”, J. Symb. Comput., 61–62 (2014), 116–127 | DOI | Zbl

[70] Joubert, S. V., Shatalov, M. Yu., and Spoelstra, H., “On Electronically Restoring an Imperfect Vibratory Gyroscope to an Ideal State”, Mechanics for Materials and Technologies, Adv. Struct. Mater., 46, eds. H. Altenbach, R. Goldstein, E. Murashkin, Springer, Cham, 2017, 231–256 | DOI | MR

[71] Klimov, D. M., Zhuravlev, V. F., and Zhbanov, Yu. K., Quartz Hemispherical Resonator (Wave Solid-State Gyroscope, L. A. Kim, Moscow, 2017, 194 pp. (Russian)

[72] Joubert, S. V., Shatalov, M. Yu., and Spoelstra, H., “Optimisation of the Mass Balancing Process in Vibratory Gyroscopes”, Proc. of the 22nd Internat. Congr. on Sound and Vibration (Florence, Italy, Jul 2015), 8 pp.

[73] Kim, J.-H. and Kim, J.-H., “Thermoelastic Damping Effect of the Micro-Ring Resonator with Irregular Mass and Stiffness”, J. Sound Vibration, 369 (2016), 168–177 | DOI

[74] MATLAB R2019b 9.7.0.1190202, , 2018 https://www.mathworks.com

[75] Mitropolsky, Yu. A. and Dao, Nguyen, Applied Asymptotic Methods in Nonlinear Oscillations, Solid Mech. Appl., 55, Springer, Dordrecht, 2013, X, 342 pp. | MR

[76] Merkuriev, I. and Podalkov, V., Dynamics of Micromechanical and Wave Solid-State Gyroscopes, Fizmatlit, Moscow, 2009, 228 pp. (Russian)

[77] Nayfeh, A. H. and Mook, D. T., Nonlinear Oscillations, Wiley, New York, 1979, 720 pp. | MR | Zbl

[78] Dhooge, A., Govaerts, W., and Kuznetsov, Yu. A., “MATCONT: A Matlab Package for Numerical Bifurcation Analysis of ODEs”, ACM Trans. Math. Softw., 29:2 (2003), 141–164 \if0 | DOI | MR | Zbl

[79] Izv. Akad. Nauk. Mekh. Tverd. Tela, 2008, no. 3, 77–89 (Russian \fi) | DOI