The Integrable Problem of the Rolling Motion
Russian journal of nonlinear dynamics, Tome 19 (2023) no. 1, pp. 3-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper addresses the problem of a sphere with axisymmetric mass distribution rolling on a horizontal plane. It is assumed that there is no slipping of the sphere as it rolls in the direction of the projection of the symmetry axis onto the supporting plane. It is also assumed that, in the direction perpendicular to the above-mentioned one, the sphere can slip relative to the plane. Examples of realization of the above-mentioned nonholonomic constraint are given. Equations of motion are obtained and their first integrals are found. It is shown that the system under consideration admits a redundant set of first integrals, which makes it possible to perform reduction to a system with one degree of freedom.
Keywords: nonholonomic constraint, first integral, integrability, reduction.
@article{ND_2023_19_1_a0,
     author = {A. A. Kilin and T. B. Ivanova},
     title = {The {Integrable} {Problem} of the {Rolling} {Motion}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {3--17},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2023_19_1_a0/}
}
TY  - JOUR
AU  - A. A. Kilin
AU  - T. B. Ivanova
TI  - The Integrable Problem of the Rolling Motion
JO  - Russian journal of nonlinear dynamics
PY  - 2023
SP  - 3
EP  - 17
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2023_19_1_a0/
LA  - en
ID  - ND_2023_19_1_a0
ER  - 
%0 Journal Article
%A A. A. Kilin
%A T. B. Ivanova
%T The Integrable Problem of the Rolling Motion
%J Russian journal of nonlinear dynamics
%D 2023
%P 3-17
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2023_19_1_a0/
%G en
%F ND_2023_19_1_a0
A. A. Kilin; T. B. Ivanova. The Integrable Problem of the Rolling Motion. Russian journal of nonlinear dynamics, Tome 19 (2023) no. 1, pp. 3-17. http://geodesic.mathdoc.fr/item/ND_2023_19_1_a0/

[1] Euler, L., “De minimis oscillationibus corporum tam rigidorum quam flexibilium. Methodus nova et facilis”, Commentarii Academiæ Scientiarum Petropolitanæ, 7 (1740), 99–122; Opera Omnia, Ser. 2, 10, Birkhäuser, Basel, 1980, 17–34 | MR

[2] D'Alembert, J. Le Rond, Traité de dynamique, David l'aîné, Paris, 1743, 224 pp. | MR

[3] Poisson, S. D., Traité de mécanique, v. 2, Bachélier, Paris, 1833, 782 pp.

[4] Cournot, A. A., Mémoire sur le mouvement d'un corps rigide: soutenu par un plan fixe, Hachette, Paris, 1829, 50 pp. | MR

[5] Routh, E. J., The Advanced Part of a Treatise on the Dynamics of a System of Rigid Bodies: Being Part II of a Treatise on the Whole Subject, 6th ed., Dover, New York, 1955, xiv+484 \itemsep=2.9pt pp. | MR

[6] Markeev, A. P., Dynamics of a Body in Contact with a Solid Surface, R Dynamics, Institute of Computer Science, Izhevsk, 2014, 496 pp. (Russian) | MR

[7] Borisov, A. V. and Mamaev, I. S., Rigid Body Dynamics, De Gruyter Stud. Math. Phys., 52, De Gruyter, Berlin, 2018, vii+526 pp. | MR

[8] Neimark, Ju. I. and Fufaev, N. A., Dynamics of Nonholonomic Systems, Trans. Math. Monogr., 33, AMS, Providence, R.I., 2004, 518 pp. | MR

[9] Poincaré, H., “Hertz's Ideas in Mechanics”, Revue Générale des Sciences Pures et Appliquées, 8 (1897), 734–743

[10] Borisov, A. V. and Mamaev, I. S., “On the History of the Development of the Nonholonomic Dynamics”, Regul. Chaotic Dyn., 7:1 (2002), 43–47 | DOI | MR | Zbl

[11] Borisov, A. V., Mamaev, I. S., and Bizyaev, I. A., “Historical and Critical Review of the Development of Nonholonomic Mechanics: The Classical Period”, Regul. Chaotic Dyn., 21:4 (2016), 455–476 | DOI | MR | Zbl

[12] Puiseux, V., “Du mouvement d'un solide de révolution posé sur un plan horizontal”, J. Math. Pures Appl. Sér. 1, 13 (1848), 249–256

[13] Puiseux, V., “Solution de quelques questions relatives au mouvement d'un corps solide pesant posé sur un plan horizontal”, J. Math. Pures Appl. Sér. 1, 17 (1852), 1–30

[14] Klein, F., The Mathematical Theory of the Top: Lectures Delivered on the Occasion of the Sesquicentennial Celebration of Princeton, Charles Scribner's Sons, New York, 1897, 96 pp.

[15] Routh, E. J., Dynamics of a System of Rigid Bodies: Part 2. Of Atreatise on the Whole Subject, MacMillan, London, 1905, 484 pp. | MR

[16] Prikl. Mat. Mekh., 49:3 (1985), 501–503 (Russian) | DOI | MR | Zbl

[17] Jellett, J. H., A Treatise on the Theory on Friction, MacMillan, London, 1872, 220 pp.

[18] Dokl. Akad. Nauk, 493:1 (2020), 48–50 (Russian) | DOI

[19] Kilin, A. A. and Pivovarova, E. N., “Conservation Laws for a Spherical Top on a Plane with Friction”, Internat. J. Non-Linear Mech., 129 (2021), 103666, 5 pp. | DOI

[20] Hertz, H., Gesammelte Werke, v. 3, Die Prinzipien der Mechanik in neuem Zusammenhange dargestellt, Barth, Leipzig, 1894

[21] Bobylev, D., “Kugel, die ein Gyroskop einschliesst und auf einer Horizontalebene rollt, ohne dabei zu gleiten”, Mat. Sb., 16:3 (1892), 544–581 (Russian)

[22] Math. Sb., 24:1 (1903), 139–168 (Russian) | DOI | MR | Zbl

[23] Hamel, G., “Die Lagrange-Eulerschen Gleichungen der Mechanik”, Z. Math. u. Phys., 50 (1904), 1–57

[24] Hadamard, J., “Sur les mouvements de roulement”, Mémoires de la Société des sciences physiques et naturelles de Bordeaux, 4e série, 5 (1895), 397–417

[25] Appell, P., Les mouvements de roulement en dynamique (avec deux notes de M. Hadamard), Carré et Naud, Paris, 1899, 70 pp.

[26] Borisov, A. V., Kazakov, A. O., and Pivovarova, E. N., “Regular and Chaotic Dynamics in the Rubber Model of a Chaplygin Top”, Regul. Chaotic Dyn., 21:7–8 (2016), 885–901 | DOI | MR | Zbl

[27] Kazakov, A. O., “Strange Attractors and Mixed Dynamics in the Problem of an Unbalanced Rubber Ball Rolling on a Plane”, Regul. Chaotic Dyn., 18:5 (2013), 508–520 | DOI | MR | Zbl

[28] Borisov, A. V. and Mamaev, I. S., “Rolling of a Rigid Body on a Plane and Sphere: Hierarchy of Dynamics”, Regul. Chaotic Dyn., 7:2 (2002), 177–200 \itemsep=2pt | DOI | MR | Zbl

[29] Collected Works, v. 1, Gostekhizdat, Moscow, 1948, 57–75 (Russian) | DOI | MR | MR | Zbl

[30] Béghin, H., “Sur les conditions d'application des équations de Lagrange à un système non holonome”, Bull. Soc. Math. France, 57 (1929), 118–124 | MR

[31] Borisov, A. V., Mamaev, I. S., and Treschev, D. V., “Rolling of a Rigid Body without Slipping and Spinning: Kinematics and Dynamics”, Nelin. Dinam., 8:4 (2012), 783–797 (Russian) | DOI

[32] Ehlers, K. M. and Koiller, J., “Rubber Rolling: Geometry and Dynamics of $2-3-5$ Distributions”, Proc. IUTAM Symposium 2006 on Hamiltonian Dynamics, Vortex Structures, Turbulence (Moscow, Russia, Aug 2006), 469–480 | MR

[33] Borisov, A. V., Mamaev, I. S., and Bizyaev, I. A., “The Hierarchy of Dynamics of a Rigid Body Rolling without Slipping and Spinning on a Plane and a Sphere”, Regul. Chaotic Dyn., 18:3 (2013), 277–328 | DOI | MR | Zbl

[34] Dokl. Akad. Nauk, 458:4 (2014), 398–401 (Russian) | DOI | MR | Zbl

[35] Bolsinov, A. V., Borisov, A. V., and Mamaev, I. S., “Rolling of a Ball without Spinning on a Plane: The Absence of an Invariant Measure in a System with a Complete Set of Integrals”, Regul. Chaotic Dyn., 17:6 (2012), 571–579 | DOI | MR | Zbl

[36] Mat. Sb., 28:2 (1912), 303–314 (Russian) | DOI | MR | Zbl

[37] Prikl. Mat. Mekh., 73:2 (2009), 219–225 (Russian) | DOI | MR | Zbl

[38] Prikl. Mat. Mekh., 42:1 (1978), 28–33 | DOI | MR

[39] Borisov, A. V., Kilin, A. A., and Mamaev, I. S., “On the Hadamard – Hamel Problem and the Dynamics of Wheeled Vehicles”, Regul. Chaotic Dyn., 20:6 (2015), 752–766 | DOI | MR | Zbl

[40] Bizyaev, I. A., “The Inertial Motion of a Roller Racer”, Regul. Chaotic Dyn., 22:3 (2017), 239–247 | DOI | MR | Zbl

[41] Bizyaev, I. A., Borisov, A. V., and Mamaev, I. S., “Exotic Dynamics of Nonholonomic Roller Racer with Periodic Control”, Regul. Chaotic Dyn., 23:7–8 (2018), 983–994 | DOI | MR | Zbl

[42] Borisov, A. V., Mamaev, I. S., Kilin, A. A., and Bizyaev, I. A., “Qualitative Analysis of the Dynamics of a Wheeled Vehicle”, Regul. Chaotic Dyn., 20:6 (2015), 739–751 | DOI | MR | Zbl

[43] Kilin, A. A. and Bobykin, A. D., “Control of a Vehicle with Omniwheels on a Plane”, Nelin. Dinam., 10:4 (2014), 473–481 (Russian) | DOI

[44] Borisov, A. V., Kilin, A. A., and Mamaev, I. S., “Dynamics and Control of an Omniwheel Vehicle”, Regul. Chaotic Dyn., 20:2 (2015), 153–172 | DOI | MR | Zbl

[45] Collected Works, v. 1, Gostekhizdat, Moscow, 1948, 26–56 (Russian) | DOI | MR | MR | Zbl

[46] Ivanova, T. B. and Pivovarova, E. N., “Dynamics and Control of a Spherical Robot with an Axisymmetric Pendulum Actuator”, Nelin. Dinam., 9:3 (2013), 507–520 (Russian) | DOI | MR

[47] Ivanova, T. B., Kilin, A. A., and Pivovarova, E. N., “Controlled Motion of a Spherical Robot with Feedback: 1”, J. Dyn. Control Syst., 24:3 (2018), 497–510 \enlargethispage*{\baselineskip} | DOI | MR | Zbl

[48] Dokl. Akad. Nauk, 482:6 (2018), 655–660 (Russian) | DOI | MR

[49] Ivanova, T. B., Kilin, A. A., and Pivovarova, E. N., “Controlled Motion of a Spherical Robot with Feedback: 2”, J. Dyn. Control Syst., 25:1 (2019), 1–16 | DOI | MR | Zbl

[50] Dokl. Akad. Nauk, 481:3 (2018), 258–263 (Russian) | DOI | MR

[51] Roozegar, M. and Mahjoob, M. J., “Modelling and Control of a Non-Holonomic Pendulum-Driven Spherical Robot Moving on an Inclined Plane: Simulation and Experimental Results”, IET Control Theory Appl., 11:4 (2017), 541–549 | DOI | MR

[52] Svinin, M., Bai, Y., and Yamamoto, M., “Dynamic Model and Motion Planning for a Pendulum-Actuated Spherical Rolling Robot”, Proc. of the 2015 IEEE Internat. Conf. on Robotics and Automation (ICRA), 656–661

[53] Borisov, A. V., Kilin, A. A., Karavaev, Yu. L., and Klekovkin, A. V., “Stabilization of the Motion of a Spherical Robot Using Feedbacks”, Appl. Math. Model., 69 (2019), 583–592 | DOI | MR | Zbl

[54] Borisov, A. V., Kilin, A. A., and Mamaev, I. S., “Generalized Chaplygin's Transformation and Explicit Integration of a System with a Spherical Support”, Regul. Chaotic Dyn., 17:2 (2012), 170–190 | DOI | MR | Zbl

[55] Fedorov, Yu. N., “Motion of a Rigid Body in a Spherical Suspension”, Vestn. Mosk. Univ. Ser. 1. Mat. Mekh., 1988, no. 5, 91–93 (Russian) | MR

[56] Borisov, A. V., Kilin, A. A., and Mamaev, I. S., “Hamiltonicity and Integrability of the Suslov Problem”, Regul. Chaotic Dyn., 16:1–2 (2011), 104–116 | DOI | MR | Zbl

[57] Bizyaev, I. A., Borisov, A. V., and Mamaev, I. S., “The Dynamics of Nonholonomic Systems Consisting of a Spherical Shell with a Moving Rigid Body Inside”, Regul. Chaotic Dyn., 19:2 (2014), 198–213 | DOI | MR | Zbl

[58] Borisov, A. V. and Mamaev, I. S., “Two Non-Holonomic Integrable Problems Tracing Back to Chaplygin”, Regul. Chaotic Dyn., 17:2 (2012), 191–198 | DOI | MR | Zbl

[59] Bizyaev, I. A., Borisov, A. V., and Mamaev, I. S., “Different Models of Rolling for a Robot Ball on a Plane as a Generalization of the Chaplygin Ball Problem”, Regul. Chaotic Dyn., 24:5 (2019), 560–582 | DOI | MR | Zbl

[60] Arnol'd, V. I., Kozlov, V. V., and Neĭshtadt, A. I., Mathematical Aspects of Classical and Celestial Mechanics, Encyclopaedia Math. Sci., 3, 3rd ed., Springer, Berlin, 2006 | DOI | MR | Zbl

[61] Borisov, A. V. and Mamaev, I. S., “Conservation Laws, Hierarchy of Dynamics and Explicit Integration of Nonholonomic Systems”, Regul. Chaotic Dyn., 13:5 (2008), 443–490 | DOI | MR | Zbl

[62] Borisov, A. V. and Mamaev, I. S., “Symmetries and Reduction in Nonholonomic Mechanics”, Regul. Chaotic Dyn., 20:5 (2015), 553–604 | DOI | MR | Zbl

[63] Borisov, A. V., Mamaev, I. S., and Kilin, A. A., “Dynamics of Rolling Disk”, Regul. Chaotic Dyn., 8:2 (2003), 201–212 | DOI | MR