Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2022_18_5_a2, author = {W. K. Shaker and A. Klimchik}, title = {Stiffness {Modeling} of a {Double} {Pantograph}}, journal = {Russian journal of nonlinear dynamics}, pages = {771--785}, publisher = {mathdoc}, volume = {18}, number = {5}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2022_18_5_a2/} }
W. K. Shaker; A. Klimchik. Stiffness Modeling of a Double Pantograph. Russian journal of nonlinear dynamics, Tome 18 (2022) no. 5, pp. 771-785. http://geodesic.mathdoc.fr/item/ND_2022_18_5_a2/
[1] Staicu, S., “Spatial Parallel Robots”, Dynamics of Parallel Robots, Cham: Springer, 2019, 191–243
[2] Hamidi, B., “Design and Calculation of the Scissors-Type Elevating Platforms”, Open J. Saf. Sci. Technol., 2:1 (2012), 8–15
[3] Kirsanov, D., Sevostianov, I., Rodionov, O., and Ostanin, M., “Stiffness Analisys of the Tripteron Parallel Manipulator”, 2020 Internat. Conf. “Nonlinearity, Information and Robotics” (NIR, Innopolis, Russia, Jun 2020), 6 pp.
[4] Yan, S. J., Ong, S. K., and Nee, A. Y. C., “Stiffness Analysis of Parallelogram-Type Parallel Manipulators Using a Strain Energy Method”, Robot. Comput. Integr. Manuf., 37 (2016), 13–22
[5] Bouzgarrou, B. C., Fauroux, J. C., Gogu, G., and Heerah, Y., “Rigidity Analysis of T3R1 Parallel Robot with Uncoupled Kinematic”, Proc. of the 35th Internat. Symp. on Robotics (Paris, France, Mar 2004), 6 pp.
[6] Popov, D., Skvortsova, V., and Klimchik, A., “Stiffness Modeling of 3RRR Parallel Spherical Manipulator”, Proc. of the 6th Internat. Young Scientists Conf. on Information Technologies, Telecommunications and Control Systems (ITTCS, Innopolis/Yekaterinburg, Ruaain Federation, Dec 2019), 7 pp.
[7] Deblaise, D., Hernot, X., and Maurine, P., “A Systematic Analytical Method for PKM Stiffness Matrix Calculation”, Proc. of the IEEE Internat. Conf. on Robotics and Automation (ICRA, Orlando, Fla., May 2006), 4213–4219
[8] Klimchik, A., Pashkevich, A., and Chablat, D., “Fundamentals of Manipulator Stiffness Modeling Using Matrix Structural Analysis”, Mech. Mach. Theory, 133 (2019), 365–394
[9] Klimchik, A., Enhanced Stiffness Modeling of Serial and Parallel Manipulators for Robotic-Based Processing of High Performanc Materials, PhD Thesis, École des Mines de Nantes, Nantes, École Centrale de Nantes, 2011, 161 pp.
[10] Quennouelle, C. and Gosselin, C., “Instantaneous Kinemato-Static Model of Planar Compliant Parallel Mechanisms”, Proc. of the ASME Internat. Design Engineering Technical Conf. and Computers and Information in Engineering Conf. (Brooklyn, New York, Aug 2008), v. 2, The 32nd Mechanisms and Robotics Conf., Parts A and B, 163–173
[11] Chen, S.-F. and Kao, I., “Conservative Congruence Transformation for Joint and Cartesian Stiffness Matrices of Robotic Hands and Fingers”, Int. J. Rob. Res., 19:9 (2000), 835–847
[12] Klimchik, A. Pashkevich, A., and Chablat, D., “Stiffness Modeling of NAVARO II Transmission System”, IFAC-PapersOnLine, 52:13 (2019), 701–706
[13] Double Pantograph Stiffness Modelling: NIR'2022 Conference Presentation, , 2022 https://github.com/Walid-khaled/Double-Pantograph-Stiffness-Modelling
[14] Pashkevich, A., Klimchik, A., Caro, S., and Chablat, D., “Stiffness Modelling of Parallelogram-Based Parallel Manipulators”, New Trends in Mechanism Science, Mech. Mach. Sci., 5, eds. D. Pisla, M. Ceccarelli, M. Husty, B. Corves, Springer, Dordrecht, 2010, 675–682