Sparse Node-Distance Coordinate Representation
Russian journal of nonlinear dynamics, Tome 18 (2022) no. 5, pp. 885-898.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work, a nonminimal coordinate representation of tensegrity structures with explicit constraints is introduced. A method is proposed for representation of results on tensegrity structures in sparse models of generalized forces, providing advantages for code generation for symbolic or autodifferentiation derivation tasks, and giving diagonal linear models with constant inertia matrices, allowing one not only to simplify computations and matrix inversions, but also to lower the number of elements that need to be stored when the linear model is evaluated along a trajectory.
Keywords: tensegrity, dynamic model, nonminimal representation, linearized model.
@article{ND_2022_18_5_a10,
     author = {S. I. Savin and R. R. Khusainov},
     title = {Sparse {Node-Distance} {Coordinate} {Representation}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {885--898},
     publisher = {mathdoc},
     volume = {18},
     number = {5},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2022_18_5_a10/}
}
TY  - JOUR
AU  - S. I. Savin
AU  - R. R. Khusainov
TI  - Sparse Node-Distance Coordinate Representation
JO  - Russian journal of nonlinear dynamics
PY  - 2022
SP  - 885
EP  - 898
VL  - 18
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2022_18_5_a10/
LA  - en
ID  - ND_2022_18_5_a10
ER  - 
%0 Journal Article
%A S. I. Savin
%A R. R. Khusainov
%T Sparse Node-Distance Coordinate Representation
%J Russian journal of nonlinear dynamics
%D 2022
%P 885-898
%V 18
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2022_18_5_a10/
%G en
%F ND_2022_18_5_a10
S. I. Savin; R. R. Khusainov. Sparse Node-Distance Coordinate Representation. Russian journal of nonlinear dynamics, Tome 18 (2022) no. 5, pp. 885-898. http://geodesic.mathdoc.fr/item/ND_2022_18_5_a10/

[1] Paul, C., Roberts, J. W., Lipson, H.. and Valero Cuevas, F. J., “Gait Production in a Tensegrity Based Robot”, ICAR'05: Proc. of the 12th Internat. Conf. on Advanced Robotics (Seattle, Wash., Jul 2005), 216–222

[2] Sabelhaus, A. P., Bruce, J., Caluwaerts, K., Manovi, P., Firoozi, R. F., Dobi, S., Agogino, A. M., and SunSpiral, V., “System Design and Locomotion of SUPERball, an Untethered Tensegrity Robot”, 2015 IEEE Internat. Conf. on Robotics and Automation (ICRA, Seattle, Wash., May 2015), 2867–2873

[3] Caluwaerts, K., Despraz, J., Işçen, A., Sabelhaus, A. P., Bruce, J., Schrauwen, B., and SunSpiral, V., “Design and Control of Compliant Tensegrity Robots through Simulation and Hardware Validation”, J. R. Soc. Interface, 11:98 (2014), 20140520, 13 pp.

[4] Friesen, J., Pogue, A., Bewley, Th., de Oliveira, M., Skelton, R., and Sunspiral, V., “DuCTT: A Tensegrity Robot for Exploring Duct Systems”, 2014 IEEE International Conference on Robotics and Automation (ICRA, Hong Kong, China, Jun 2015), 4222–4228

[5] Tietz, B. R., Carnahan, R. W., Bachmann, R. J., Quinn, R. D., and SunSpiral, V., “Tetraspine: Robust Terrain Handling on a Tensegrity Robot Using Central Pattern Generators”, 2013 IEEE/ASME Internat. Conf. on Advanced Intelligent Mechatronics (Wollongong, NSW, Australia, Jul 2013), 261–267

[6] Zha, J., Wu, X., Kroeger, J., Perez, N., and Mueller, M. W., “A Collision-Resilient Aerial Vehicle with Icosahedron Tensegrity Structure”, 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS, Las Vegas, Nev., Oct 2020/Jan 2021), 1407–1412

[7] Hustig-Schultz, D., SunSpiral, V., and Teodorescu, M., “Morphological Design for Controlled Tensegrity Quadruped Locomotion”, 2016 IEEE/RSJ Internat. Conf. on Intelligent Robots and Systems (IROS, Daejeon, Korea, Oct 2016), 4714–4719

[8] Bliss, Th., Iwasaki, T., and Bart-Smith, H., “Central Pattern Generator Control of a Tensegrity Swimmer”, IEEE/ASME Trans. Mechatronics, 18:2 (2013), 586–597

[9] Lessard, S., Castro, D., Asper, W., Chopra, Sh. D., Baltaxe-Admony, L. B., Teodorescu, M., SunSpiral, V., and Agogino, A., “A Bio-Inspired Tensegrity Manipulator with Multi-DOF, Structurally Compliant Joints”, 2016 IEEE/RSJ Internat. Conf. on Intelligent Robots and Systems (IROS, Daejeon, Korea, Oct 2016), 630–635

[10] Lessard, S., Bruce, J., Jung, E., Teodorescu, M., SunSpiral, V., and Agogino, A., “A Lightweight, Multi-Axis Compliant Tensegrity Joint”, 2016 IEEE International Conference on Robotics and Automation (ICRA, Stockholm, Sweden, May 2016), 630–635

[11] Wang, R., Goyal, R., Chakravorty, S., and Skelton, R. E., “Model and Data Based Approaches to the Control of Tensegrity Robots”, IEEE Robot. Autom. Lett., 5:3 (2020), 3846–3853

[12] Zardini, E., Zappetti, D., Zambrano, D., Iacca, G., and Floreano, D., “Seeking Quality Diversity in Evolutionary Co-Design of Morphology and Control of Soft Tensegrity Modular Robots”, GECCO'21: Proceedings of the Genetic and Evolutionary Computation Conference (Lille, France, Jun 2021), 189–197

[13] Ehara, Sh. and Kanno, Y., “Topology Design of Tensegrity Structures via Mixed Integer Programming”, Int. J. Solids Struct., 47:5 (2010), 571–579

[14] Kanno, Y., “Topology Optimization of Tensegrity Structures under Compliance Constraint: A Mixed Integer Linear Programming Approach”, Optim. Eng., 14:1 (2013), 61–96

[15] Tibert, A. G. and Pellegrino, S., “Review of Form-Finding Methods for Tensegrity Structures”, Int. J. Space Struct., 18:4 (2003), 209–223

[16] Masic, M., Skelton, R. E., and Gill, Ph. E., “Algebraic Tensegrity Form-Finding”, Int. J. Solids Struct., 42:16–17 (2005), 4833–4858

[17] Nakanishi, J., Mistry, M., and Schaal, S., “Inverse Dynamics Control with Floating Base and Constraints”, Proc. of the IEEE Internat. Conf. on Robotics and Automation (Rome, Italy, Apr 2007), 1942–1947

[18] Savin, S., Balakhnov, O., and Klimchik, A., “Convex Optimization-Based Stiffness Control for Tensegrity Robotic Structures”, Proc. of the 28th Mediterranean Conf. on Control and Automation (MED, Saint-Raphaël, France, Sep 2020), 990–995