Gyrostatic Suslov Problem
Russian journal of nonlinear dynamics, Tome 18 (2022) no. 4, pp. 609-627.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we investigate the gyrostat under influence of an external potential force with the Suslov nonholonomic constraint: the projection of the total angular velocity onto a vector fixed in the body vanishes. We investigate cases of free gyrostat, the heavy gyrostat in the constant gravity field, and we discuss certain properties for general potential forces. In all these cases, the system has two first integrals: the energy and the geometric first integral. For its integrability, either two additional first integrals or one additional first integral and an invariant $n$-form are necessary. For the free gyrostat we identify three cases integrable in the Jacobi sense. In the case of heavy gyrostat three cases with one additional first integral are identified. Among them, one case is integrable and the non-integrability of the remaining cases is proved by means of the differential Galois methods. Moreover, for a distinguished case of the heavy gyrostat a co-dimension one invariant subspace is identified. It was shown that the system restricted to this subspace is super-integrable, and solvable in elliptic functions. For the gyrostat in general potential force field conditions of the existence of an invariant $n$-form defined by a special form of the Jacobi last multiplier are derived. The class of potentials satisfying them is identified, and then the system restricted to the corresponding invariant subspace of co-dimension one appears to be integrable in the Jacobi sense.
Keywords: gyrostat, Suslov constraint, integrability, nonholonomic systems.
@article{ND_2022_18_4_a9,
     author = {A. J. Maciejewski and M. Przybylska},
     title = {Gyrostatic {Suslov} {Problem}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {609--627},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2022_18_4_a9/}
}
TY  - JOUR
AU  - A. J. Maciejewski
AU  - M. Przybylska
TI  - Gyrostatic Suslov Problem
JO  - Russian journal of nonlinear dynamics
PY  - 2022
SP  - 609
EP  - 627
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2022_18_4_a9/
LA  - en
ID  - ND_2022_18_4_a9
ER  - 
%0 Journal Article
%A A. J. Maciejewski
%A M. Przybylska
%T Gyrostatic Suslov Problem
%J Russian journal of nonlinear dynamics
%D 2022
%P 609-627
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2022_18_4_a9/
%G en
%F ND_2022_18_4_a9
A. J. Maciejewski; M. Przybylska. Gyrostatic Suslov Problem. Russian journal of nonlinear dynamics, Tome 18 (2022) no. 4, pp. 609-627. http://geodesic.mathdoc.fr/item/ND_2022_18_4_a9/

[1] Arnold, V. I., Ordinary Differential Equations, Springer, Berlin, 2006, ii+334 pp.

[2] Ayoul, M. and Zung, N. T., “Galoisian Obstructions to Non-Hamiltonian Integrability”, C. R. Math. Acad. Sci. Paris, 348:23–24 (2010), 1323–1326

[3] Bizyaev, I. A., Borisov, A. V., and Kazakov, A. O., “Dynamics of the Suslov Problem in a Gravitational Field: Reversal and Strange Attractors”, Regul. Chaotic Dyn., 20:5 (2015), 605–626

[4] Borisov, A. V. and Mamaev, I. S., Dynamics of a Rigid Body: Hamiltonian Methods, Integrability, Chaos, 2nd ed., R Dynamics, Institute of Computer Science, Izhevsk, 2005, 576 pp. (Russian)

[5] Borisov, A. V., Kilin, A. A., and Mamaev, I. S., “Hamiltonicity and Integrability of the Suslov Problem”, Regul. Chaotic Dyn., 16:1–2 (2011), 104–116

[6] Fedorov, Yu. N., Maciejewski, A. J., and Przybylska, M., “The Poisson Equations in the Nonholonomic Suslov Problem: Integrability, Meromorphic and Hypergeometric Solutions”, Nonlinearity, 22:9 (2009), 2231–2259

[7] Gavrilov, L., “Nonintegrability of the Equations of Heavy Gyrostat”, Compositio Math., 82:3 (1992), 275–291

[8] Gorr, G. V., Kudryashova, L. V., and Stepanova, L. A., Classical Problems in the Theory of Solid Bodies, Their Development and Current State, Naukova Dumka, Kiev, 1978, 294 pp. (Russian)

[9] Iwasaki, K., Kimura, H., Shimomura, Sh., and Yoshida, M., From Gauss to Painlevé: A Modern Theory of Special Functions, Vieweg, Braunschweig, 1991, XII, 347 pp.

[10] Kharlamova, E. I., “Motion Based on the Inertia of a Gyrostat Satisfying a Nonholonomic Constraint”, Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela, 1971, no. 3, 130–132 (Russian)

[11] Kharlamov, P. V., “Gyrostat with a Nonholonomic Constraint”, Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela, 1971, no. 3, 120–130 (Russian)

[12] Kimura, T., “On Riemann's Equations Which Are Solvable by Quadratures”, Funkcial. Ekvac., 12 (1969), 269–281

[13] Kozlov, V. V., “On the Theory of Integration of the Equations of Nonholonomic Mechanics”, Uspekhi Mekh., 8:3 (1985), 85–107 (Russian)

[14] Kozlov, V. V., Symmetries, Topology and Resonances in Hamiltonian Mechanics, Ergeb. Math. Grenzgeb. (3), 31, Springer, Berlin, 1996, xii+378 pp.

[15] Maciejewski, A. J. and Przybylska, M., “Nonintegrability of the Suslov Problem”, J. Math. Phys., 45:3 (2004), 1065–1078

[16] Maciejewski, A. J. and Przybylska, M., “Differential Galois Theory and Integrability”, Int. J. Geom. Methods Mod. Phys., 6:8 (2009), 1357–1390

[17] Maciejewski, A. J. and Przybylska, M., “Integrability Analysis of the Stretch-Twist-Fold Flow”, J. Nonlinear Sci., 30:4 (2020), 1607–1649

[18] Maciejewski, A. J., Przybylska, M., Simpson, L., and Szumiński, W., “Non-Integrability of the Dumbbell and Point Mass Problem”, Celestial Mech. Dynam. Astronom., 117:3 (2013), 315–330

[19] Whittaker, E. T. and Watson, G. N., A Course of Modern Analysis: An Introduction to the General Theory of Infinite Processes and of Analytic Functions: With an Account of the Principal Transcendental Functions, Cambridge Univ. Press, Cambridge, 1996, vi+608 pp.

[20] Yehia, H. M., “On the Motion of a Rigid Body Acted Upon by Potential and Gyroscopic Forces: 1. The Equations of Motion and Their Transformations”, J. Mec. Theor. Appl., 5:5 (1986), 747–753

[21] Funkts. Anal. Prilozh., 16:3 (1982), 30–41 (Russian)

[22] Uspekhi Mat. Nauk, 52:2 (314) (1997), 167–168 (Russian)

[23] Funktsional. Anal. i Prilozhen., 31:1 (1997), 3–11 (Russian)