Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2022_18_4_a9, author = {A. J. Maciejewski and M. Przybylska}, title = {Gyrostatic {Suslov} {Problem}}, journal = {Russian journal of nonlinear dynamics}, pages = {609--627}, publisher = {mathdoc}, volume = {18}, number = {4}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2022_18_4_a9/} }
A. J. Maciejewski; M. Przybylska. Gyrostatic Suslov Problem. Russian journal of nonlinear dynamics, Tome 18 (2022) no. 4, pp. 609-627. http://geodesic.mathdoc.fr/item/ND_2022_18_4_a9/
[1] Arnold, V. I., Ordinary Differential Equations, Springer, Berlin, 2006, ii+334 pp.
[2] Ayoul, M. and Zung, N. T., “Galoisian Obstructions to Non-Hamiltonian Integrability”, C. R. Math. Acad. Sci. Paris, 348:23–24 (2010), 1323–1326
[3] Bizyaev, I. A., Borisov, A. V., and Kazakov, A. O., “Dynamics of the Suslov Problem in a Gravitational Field: Reversal and Strange Attractors”, Regul. Chaotic Dyn., 20:5 (2015), 605–626
[4] Borisov, A. V. and Mamaev, I. S., Dynamics of a Rigid Body: Hamiltonian Methods, Integrability, Chaos, 2nd ed., R Dynamics, Institute of Computer Science, Izhevsk, 2005, 576 pp. (Russian)
[5] Borisov, A. V., Kilin, A. A., and Mamaev, I. S., “Hamiltonicity and Integrability of the Suslov Problem”, Regul. Chaotic Dyn., 16:1–2 (2011), 104–116
[6] Fedorov, Yu. N., Maciejewski, A. J., and Przybylska, M., “The Poisson Equations in the Nonholonomic Suslov Problem: Integrability, Meromorphic and Hypergeometric Solutions”, Nonlinearity, 22:9 (2009), 2231–2259
[7] Gavrilov, L., “Nonintegrability of the Equations of Heavy Gyrostat”, Compositio Math., 82:3 (1992), 275–291
[8] Gorr, G. V., Kudryashova, L. V., and Stepanova, L. A., Classical Problems in the Theory of Solid Bodies, Their Development and Current State, Naukova Dumka, Kiev, 1978, 294 pp. (Russian)
[9] Iwasaki, K., Kimura, H., Shimomura, Sh., and Yoshida, M., From Gauss to Painlevé: A Modern Theory of Special Functions, Vieweg, Braunschweig, 1991, XII, 347 pp.
[10] Kharlamova, E. I., “Motion Based on the Inertia of a Gyrostat Satisfying a Nonholonomic Constraint”, Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela, 1971, no. 3, 130–132 (Russian)
[11] Kharlamov, P. V., “Gyrostat with a Nonholonomic Constraint”, Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela, 1971, no. 3, 120–130 (Russian)
[12] Kimura, T., “On Riemann's Equations Which Are Solvable by Quadratures”, Funkcial. Ekvac., 12 (1969), 269–281
[13] Kozlov, V. V., “On the Theory of Integration of the Equations of Nonholonomic Mechanics”, Uspekhi Mekh., 8:3 (1985), 85–107 (Russian)
[14] Kozlov, V. V., Symmetries, Topology and Resonances in Hamiltonian Mechanics, Ergeb. Math. Grenzgeb. (3), 31, Springer, Berlin, 1996, xii+378 pp.
[15] Maciejewski, A. J. and Przybylska, M., “Nonintegrability of the Suslov Problem”, J. Math. Phys., 45:3 (2004), 1065–1078
[16] Maciejewski, A. J. and Przybylska, M., “Differential Galois Theory and Integrability”, Int. J. Geom. Methods Mod. Phys., 6:8 (2009), 1357–1390
[17] Maciejewski, A. J. and Przybylska, M., “Integrability Analysis of the Stretch-Twist-Fold Flow”, J. Nonlinear Sci., 30:4 (2020), 1607–1649
[18] Maciejewski, A. J., Przybylska, M., Simpson, L., and Szumiński, W., “Non-Integrability of the Dumbbell and Point Mass Problem”, Celestial Mech. Dynam. Astronom., 117:3 (2013), 315–330
[19] Whittaker, E. T. and Watson, G. N., A Course of Modern Analysis: An Introduction to the General Theory of Infinite Processes and of Analytic Functions: With an Account of the Principal Transcendental Functions, Cambridge Univ. Press, Cambridge, 1996, vi+608 pp.
[20] Yehia, H. M., “On the Motion of a Rigid Body Acted Upon by Potential and Gyroscopic Forces: 1. The Equations of Motion and Their Transformations”, J. Mec. Theor. Appl., 5:5 (1986), 747–753
[21] Funkts. Anal. Prilozh., 16:3 (1982), 30–41 (Russian)
[22] Uspekhi Mat. Nauk, 52:2 (314) (1997), 167–168 (Russian)
[23] Funktsional. Anal. i Prilozhen., 31:1 (1997), 3–11 (Russian)