Spherical Robots:
Russian journal of nonlinear dynamics, Tome 18 (2022) no. 4, pp. 709-750.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper describes the existing designs of spherical robots and reviews studies devoted to investigating their dynamics and to developing algorithms for controlling them. An analysis is also made of the key features and the historical aspects of the development of their designs, in particular, taking into account various areas of application.
Keywords: spherical robot, rolling, design, modeling.
@article{ND_2022_18_4_a15,
     author = {Yu. L. Karavaev},
     title = {Spherical {Robots:}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {709--750},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2022_18_4_a15/}
}
TY  - JOUR
AU  - Yu. L. Karavaev
TI  - Spherical Robots:
JO  - Russian journal of nonlinear dynamics
PY  - 2022
SP  - 709
EP  - 750
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2022_18_4_a15/
LA  - en
ID  - ND_2022_18_4_a15
ER  - 
%0 Journal Article
%A Yu. L. Karavaev
%T Spherical Robots:
%J Russian journal of nonlinear dynamics
%D 2022
%P 709-750
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2022_18_4_a15/
%G en
%F ND_2022_18_4_a15
Yu. L. Karavaev. Spherical Robots:. Russian journal of nonlinear dynamics, Tome 18 (2022) no. 4, pp. 709-750. http://geodesic.mathdoc.fr/item/ND_2022_18_4_a15/

[1] Easterling, J. M., Toy, Patent US No. 2 949 696 A, 1960

[2] Koshiyama, A. and Yamafuji, K., “Design and Control of an All-Direction Steering Type Mobile Robot”, Int. J. Robot. Res., 12:5 (1993), 411–419

[3] Halme, A., Schonberg, T., and Wang, Y., “Motion Control of a Spherical Mobile Robot”, Proc. of the 4th IEEE Internat. Workshop on Advanced Motion Control (Mie, Japan, 1996), v. 1, 259–264

[4] Bicchi, A., Balluchi, A., Prattichizzo, D., and Gorelli, A., “Introducing the “SPHERICLE”: An Experimental Testbed for Research and Teaching in Nonholonomy”, Proc. of the IEEE Internat. Conf. on Robotics and Automation (Albuquerque, N.M., 1997), v. 3, 2620–2625

[5] Armour, Rh. H. and Vincent, J. F., “Rolling in Nature and Robotics: A Review”, J. Bionic Eng., 3:4 (2006), 195–208

[6] Crossley, V. A., A Literature Review on the Design of Spherical Rolling Robots, Pittsburgh, Pa., 2006, 6 pp.

[7] Markeev, A. P., Dynamics of a Body, Being Contiguous to a Rigid Surface, 2nd ed., R Dynamics, Institute of Computer Science, Izhevsk, 2014, 496 pp. (Russian)

[8] Prikl. Mat. Mekh., 62:5 (1998), 762–767 (Russian)

[9] Ivanov, A. P., “Comparative Analysis of Friction Models in Dynamics of a Ball on a Plane”, Nelin. Dinam., 6:4 (2010), 907–912 (Russian)

[10] Izv. Akad. Nauk. Mekh. Tverd. Tela, 2005, no. 6, 157–168 (Russian)

[11] Kozlov, V. V., “Notes on Dry Friction and Nonholonomic Constraints”, Nelin. Dinam., 6:4 (2010), 903–906 (Russian)

[12] Kudra, G. and Awrejcewicz, J., “Application and Experimental Validation of New Computational Models of Friction Forces and Rolling Resistance”, Acta Mech., 226:9 (2015), 2831–2848

[13] Prikl. Mat. Mekh., 76:2 (2012), 214–223 (Russian)

[14] Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, 2010, no. 2, 3–14 (Russian)

[15] Terekhov, G. Pavlovsky, V., “Controlling Spherical Mobile Robot in a Two-Parametric Friction Model”, MATEC Web Conf., 113 (2017), 02007, 5 pp.

[16] Putkaradze, V. and Rogers, S. M., “On the Normal Force and Static Friction Acting on a Rolling Ball Actuated by Internal Point Masses”, Regul. Chaotic Dyn., 24:2 (2019), 145–170

[17] Antali, M. and Stepan, G., “Nonsmooth Analysis of Three-Dimensional Slipping and Rolling in the Presence of Dry Friction”, Nonlinear Dyn., 97 (2019), 1799–1817

[18] Zobova, A. A., “Dry Friction Distributed over a Contact Patch between a Rigid Body and a Visco-Elastic Plane”, Multibody Syst. Dyn., 45:2 (2019), 203–222

[19] Zobova, A. A., Dynamics of Systems of Solids with Contact Interaction, PhD Dissertation, Moscow, Moscow State Univ., 2020, 258 pp. (Russian)

[20] Mukherjee, R., Minor, M., and Pukrushpan, J., “Motion Planning for a Spherical Mobile Robot: Revisiting the Classical Ball-Plate Problem”, ASME J. Dyn. Syst. Meas. Control., 124:4 (2002), 502–511

[21] Borisov, A. V., Mamaev, I. S., and Treschev, D. V., “Rolling of a Rigid Body without Slipping and Spinning: Kinematics and Dynamics”, Nelin. Dinam., 8:4 (2012), 783–797 (Russian)

[22] Bizyaev, I. A., Borisov, A. V., and Mamaev, I. S., “Different Models of Rolling for a Robot Ball on a Plane As a Generalization of the Chaplygin Ball Problem”, Regul. Chaotic Dyn., 24:5 (2019), 560–582

[23] Ilin, K. I., Moffatt, H. K., and Vladimirov, V. A., “Dynamics of a Rolling Robot”, Proc. Natl. Acad. Sci. USA, 114:49 (2017), 12858–12863

[24] Putkaradze, V. and Rogers, S. M., “On the Dynamics of a Rolling Ball Actuated by Internal Point Masses”, Meccanica, 53:15 (2018), 3839–3868

[25] Ivanov, A. P., “Singularities in the Rolling Motion of a Spherical Robot”, Int. J. Non-Linear Mech., 145 (2022), 104061

[26] Mukherjee, R., Minor, M. A., and Pukrushpan, J. T., “Simple Motion Planning Strategies for Spherobot: A Spherical Mobile Robot”, Proc. of the 38th IEEE Conf. on Decision and Control (Phoenix, Ariz., Dec 1999), v. 3, 2132–2137

[27] Moghadasi, S. R., “Rolling of a Body on a Plane or a Sphere: A Geometric Point of View”, Bull. Austral. Math. Soc., 70:2 (2004), 245–256

[28] Nakashima, A., Nagase, K., and Hayakawa, Y., “Control of a Sphere Rolling on a Plane with Constrained Rolling Motion”, Proc. of the 44th IEEE Conf. on Decision and Control (Seville, Spain, Dec 2005), 1445–1452

[29] Mat. Sb., 202:9 (2011), 97–120 (Russian)

[30] Cai, Y., Zhan, Q., and Xi, X., “Path Tracking Control of a Spherical Mobile Robot”, Mech. Mach. Theory, 51 (2012), 58–73

[31] Rigatos, G., Busawon, K., Pomares, J., Wira, P., and Abbaszadeh, M., “A Nonlinear Optimal Control Approach for the Spherical Robot”, IECON'2018: Proc. of the 44th Annual Conf. of the IEEE Industrial Electronics Society (Washington, DC, Dec 2018), 2496–2501 \enlargethispage*{\baselineskip}

[32] Jia, Y.-B., “Planning the Initial Motion of a Free Sliding/Rolling Ball”, IEEE Trans. Robot., 32:3 (2016), 566–582

[33] Roozegar, M., Mahjoob, M. J., and Jahromi, M., “Optimal Motion Planning and Control of a Nonholonomic Spherical Robot Using Dynamic Programming Approach: Simulation and Experimental Results”, Mechatronics, 39 (2016), 174–184

[34] Rigatos, G., Busawon, K., Pomares, J., and Abbaszadeh, M., “Nonlinear Optimal Control for a Spherical Rolling Robot”, Int. J. Intell. Robot. Appl., 3:2 (2019), 221–237

[35] Svinin, M., Bai, Y., and Yamamoto, M., “Dynamic Model and Motion Planning for a Pendulum-Actuated Spherical Rolling Robot”, Proc. of the 2015 IEEE Internat. Conf. on Robotics and Automation (ICRA), 656–661

[36] Bai, Y., Svinin, M., and Yamamoto, M., “Dynamics-Based Motion Planning for a Pendulum-Actuated Spherical Rolling Robot”, Regul. Chaotic Dyn., 23:4 (2018), 372–388

[37] Ylikorpi, T., A Biologically Inspired Rolling Robot for Planetary Surface Exploration, PhD Thesis, Helsinki Univ. of Technology, Helsinki, 2005, 112 pp.

[38] Hajos, G., Jones, J., Behar, A., and Dodd, M., “An Overview of Wind-Driven Rovers for Planetary Exploration”, 43rd AIAA Aerospace Sciences Meeting and Exhibit (Reno, NV, Jan 2005, NPO-20283), 13 pp.

[39] Lauwers, T., Kantor, G., and Hollis, R., “One Is Enough!”, Robotics Research, Springer Tracts in Advanced Robotics, 28, eds. S. Thrun, R. Brooks, H. Durrant-Whyte, Springer, Berlin, 2007, 327–336

[40] Nagarajan, U., Kantor, G., and Hollis, R. L., “Trajectory Planning and Control of an Underactuated Dynamically Stable Single Spherical Wheeled Mobile Robot”, IEEE Internat. Conf. on Robotics and Automation (ICRA, Kobe, Japan, 2009), 3743–3748

[41] Nagarajan, U., Kantor, G., and Hollis, R., “The Ballbot: An Omnidirectional Balancing Mobile Robot”, Int. J. Robot. Res., 33:6 (2014), 917–930

[42] Brown, H. B. Jr. and Xu, Y., “A Single-Wheel, Gyroscopically Stabilized Robot”, IEEE Internat. Conf. on Robotics and Automation (Minneapolis, Minn., 1996), v. 4, 3658–3663

[43] Xu, Y. and Ou, Y., Control of Single Wheel Robot, Springer, Berlin, 2005, 212 pp.

[44] Lensky, A. V., Martynenko, Yu. G., and Okunev, Yu. M., “Development of Robotic and Mechatronic Systems at the Institute of Mechanics, Moscow State University”, Izv. TRTU, 2006, no. 3 (58), 11–17 (Russian)

[45] Dokl. Akad. Nauk, 386:6 (2002), 767–769 (Russian)

[46] Kobrin, A. I., Martynenko, Yu. G., and Lensky, A. V., “The Problem of Controlling a Mobile Single-Wheel Robot with an Unperturbed Gyrostabilized Platform”, ISR'2004: Proc. of the 35th Internat. Symp. on Robotics (Paris, France, March 2004), 15–20

[47] Chen, W.-H., Chen, Ch.-P., Yu, W.-Sh., Lin, Ch.-H., and Lin, P.-Ch., “Design and Implementation of an Omnidirectional Spherical Robot Omnicron”, Proc. of the IEEE/ASME Internat. Conf. on Advanced Intelligent Mechatronics (Kaohsiung, Taiwan, July 2012), 719–724

[48] Chase, R. and Pandya, A., “A Review of Active Mechanical Driving Principles of Spherical Robots”, Robotics, 1:1 (2012), 3–23

[49] Ylikorpi, T. and Suomela, J., “Ball-Shaped Robots”, Climbing and Walking Robots: Towards New Applications, eds. H. Zhang, InTech, Vienna, 2007, 235–256

[50] Ylikorpi, T. J., Halme, A. J., and Forsman, P. J., “Dynamic Modeling and Obstacle-Crossing Capability of Flexible Pendulum-Driven Ball-Shaped Robots”, Rob. Auton. Syst., 87 (2017), 269–280

[51] Ylikorpi, T., Forsman, P., Halme, A., and Saarinen, J., “Unified Representation of Decoupled Dynamic Models for Pendulum-Driven Ball-Shaped Robots”, ECMS'2014: Proc. of the 28th Eur. Conf. on Modelling and Simulation (Brescia, Italy, 2014), 411–420 \itemsep=3pt

[52] Ylikorpi, T., Mobility and Motion Modelling of Pendulum-Driven Ball Decoupled Models Robots: For Steering and Obstacle Crossing, Doctoral Dissertations, Helsinki Univ. of Technology, Helsinki, 2017, 251 pp.

[53] Gheorghe, V. I., Comeagă, D. C., Duminică, D., and Cartal, L., “Triaxial Symmetric Robots: State of the Art and Trends”, Int. J. Mechatron. Appl. Mech., 2017:2 (2017), 25–34 \itemsep=2pt

[54] Bahar, M. B., Abdullah, S. S., Aras, M. S. M., Harun, M. H., and Zohedi, F. N., “A Comprehensive Review of Driving Mechanisms in Amphibian Spherical Robots”, Indian J. Geo-Mar. Sci., 50:11 (2021), 864–872

[55] Bujňák, M., Pirník, R., Rástočný, K., Janota, A., Nemec, D., Kuchár, P., Tichý, T., and Łukasik, Z., “Spherical Robots for Special Purposes: A Review on Current Possibilities”, Sensors, 22:4 (2022), 1413, 36 pp.

[56] Alizadeh, H. V., Spherical Mobile Robot, , 2022 http://www.cim.mcgill.ca/<nobr>$\sim$</nobr>hva/Spherical_Robot/

[57] Rotundus: Application of Service Robot Groundbot, , 2022 https://rotundus.se/performance/

[58] Michaud, F. and Caron, S., “Roball: An Autonomous Toy-Rolling Robot”, Proc. of the Workshop on Interactive Robot Entertainment (Pittsburgh, Penn., 2000)

[59] Michaud, F., Laplante, J.-F., Larouche, H., Duquette, A., Caron, S., Letourneau, D., and Masson, P., “Autonomous Spherical Mobile Robot for Child-Development Studies”, IEEE Trans. Syst. Man Cybern. A Syst. Hum., 35:4 (2005), 471–480

[60] Nagai, M., Control System of a Spherical Robot, Master Thesis, Luleå Univ. of Technology, Luleå, 2008, 108 pp.

[61] Panasonic to Showcase Future Lifestyles at IFA 2017, , 2017 https://news.panasonic.com/global/press/data/2017/08/en170831-1/en170831-1.html

[62] Robotics and Toy Design to Service Disability, , 2022 https://www.toy-design.com/robotics-and-toy-design-to-service-disability/

[63] Sphero: All Collections, , 2022 https://sphero.com/products/

[64] Chemel, B., Mutschler, E., and Schempf, H., “Cyclops: Miniature Robotic Reconnaissance System”, Proc. of the 1999 IEEE Internat. Conf. on Robotics and Automation (Detroit, Miss., May 1999), v. 3, 2298–2302

[65] Hernandez, J. D., Barrientos, J., del Cerro, J., Barrientos, A., and Sanz, D., “Moisture Measurement in Crops Using Spherical Robots”, Ind. Rob., 40:1 (2013), 59–66

[66] Quan, L., Chen, C., Li, Y., Qiao, Y., Xi, D., Zhang, T., and Sun, W., “Design and Test of Stem Diameter Inspection Spherical Robot”, Int. J. Agric. Biol. Eng., 12:2 (2019), 141–151

[67] SPHERE: Wireless Inspection Device (360 Degree View), , 2022 https://www.set-1.ru/products/dosmotrovoe-oborudovanie/sfera/

[68] Bounce Imaging Products, , 2022 https://bounceimaging.com/pricing-us-only

[69] Young, K., Spherical Micro-Robots Could Explore Mars, , 2006 https://www.newscientist.com/article/dn9610-spherical-micro-robots-could-explore-mars/

[70] Raura, L., Warren, A., and Thangavelautham, J., “Spherical Planetary Robot for Rugged Terrain Traversal”, IEEE Aerospace Conf. (Big Sky, Mont., Mar 2017), v. 3, 10 pp.

[71] F. Davoodi, J. W. Burdick, and M. Rais-Zadeh, “Moball Network: A Self-Powered Intelligent Network of Controllable Spherical Mobile Sensors to Explore Solar Planets and Moons”, Proc. AIAA SPACE 2014 Conference and Exposition (San Diego, Calif., Aug 2014), 9 pp.

[72] DAEDALUS: Final Presentation, , 2020 https://www.youtube.com/watch?v=69CrH9vsTTU

[73] Bessone, L., Carnelli, I., Fontaine, M., and Sauro, F., “ESA Sysnova Lunar Caves Challenge: Ideas and Technologies for a Mission to Lunar Caves”, 52nd Lunar and Planetary Science Conference (LPSC'2021, The Woodlands, Tex., Mar 2021), 1120, 2 pp.

[74] Hogan, F. R. and Forbes, J. R., “Modeling of Spherical Robots Rolling on Generic Surfaces”, Multibody Syst. Dyn., 35:1 (2015), 91–109

[75] Hogan, F. R., Forbes, J. R., and Barfoot, T. D., “Rolling Stability of a Power-Generating Tumbleweed Rover”, J. Spacecraft Rockets, 51:6 (2014), 1895–1906

[76] Electrolux Announces Design Lab 2013 Finalists, , 2013 https://www.electroluxgroup.com/en/electrolux-announces-design-lab-2013-finalists-17793/

[77] Samsung Ballie at CES 2020, , 2020 https://forbes.kz/process/technologies/patrul_buduschego/

[78] Samsung Ballie at CES 2020, , 2020 https://news.samsung.com/us/samsung-ballie-ces-2020/

[79] Next Urban Robotics 2016, , 2016 https://www.youtube.com/watch?v=IEzYZ8OHAGg

[80] Hernández, J. D., Barrientos, J., Sanz, D., Barrientos, A., Del Cerro, J., and Valente, J., “Non Invasive Moisture Measurement in Agricultural Fields Using a Rolling Spherical Robot”, Proc. of the 1st RHEA Internat. Conf. on Robotics and Associated High-Technologies and Equipment for Agriculture (Pisa, Italy, Sep 2012)), 2.1, 6 pp.

[81] Vega, J. D. H., ROSPHERE: Diseno, Construccion y Aplicacion de una Esfera Robotica, Master Tesis, Universidad Politecnica de Madrid, Madrid, 2012, 123 pp.

[82] Dobretsov, R. Iu., Borisov, E. G., Kucherenko, V. I., Bogachev, A. N., and Matrosov, S. I., “Spherical Robot As a Platform for the Purpose of Ecological Monitoring”, Transport. Transport Facilities. Ecology, 2015, no. 3, 35 (Russian)

[83] Ryadchikov, I. V., Control Methods for Bipedal Walking Robotics Systems Based on Non-Bionic Stabilization, Doctoral Dissertation, Ryazan State Radio Engineering University, Ryazan, 2020, 318 pp. (Russian)

[84] Romanishin, J. W., Gilpin, K., and Rus, D., “M-Blocks: Momentum-Driven, Magnetic Modular Robots”, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (Tokyo, Japan, Nov 2013), 4288–4295

[85] Math. Sb., 24:1 (1903), 139–168 (Russian)

[86] Zhukovsky, N. E., “On Gyroscopic Ball of D. K. Bobylev”, Collected Works, v. 1, Gostekhizdat, Moscow, 1948, 257–289 (Russian)

[87] Bobylev, D., “Kugel, die ein Gyroskop einschliesst und auf einer Horizontalebene rollt, ohne dabei zu gleiten”, Mat. Sb., 16:3 (1892), 544–581 (Russian)

[88] Mat. Zametki, 70:5 (2001), 793–795 (Russian)

[89] Kilin, A. A., “The Dynamics of Chaplygin Ball: The Qualitative and Computer Analysis”, Regul. Chaotic Dyn., 6:3 (2001), 291–306

[90] Moskvin, A. Yu., “Chaplygin's Ball with a Gyrostat: Singular Solutions”, Nelin. Dinam., 5:3 (2009), 345–356 (Russian)

[91] Vestn. Mosk. Univ. Ser. 1. Mat. Mekh., 2020, no. 3, 52–56 (Russian)

[92] Joshi, V. A. and Banavar, R. N., “Motion Analysis of a Spherical Mobile Robot”, Robotica, 27:3 (2009), 343–353

[93] Svinin, M., Morinaga, A., and Yamamoto, M., “On the Dynamic Model and Motion Planning for a Spherical Rolling Robot Actuated by Orthogonal Internal Rotors”, Regul. Chaotic Dyn., 18:1–2 (2013), 126–143

[94] Morinaga, A., Svinin, M., and Yamamoto, M., “A Motion Planning Strategy for a Spherical Rolling Robot Driven by Two Internal Rotors”, IEEE Trans. on Robotics, 30:4 (2014), 993–1002

[95] Bhattacharya, S. and Agrawal, S. K., “Design, Experiments and Motion Planning of a Spherical Rolling Robot”, Proc. of the IEEE Internat. Conf. on Robotics and Automation (San Francisco, Calif., 2000), v. 2, 1207–1212

[96] Joshi, V. A., Banavar, R. N., and Hippalgaonkar, R., “Design and Analysis of a Spherical Mobile Robot”, Mech. Mach. Theory, 45:2 (2010), 130–136

[97] Terehov, G. P. and Pavlovsky, V. E., Control of the Unbalanced Spherical Robot, Preprint No. 90, Keldysh Institute of Applied Mathematics, Moscow, 2017, 23 pp.

[98] Terehov, G. P., Dynamics Research, Trajectory Planning, Spherobot Control, PhD Dissertation, Keldysh Institute of Applied Mathematics, Moscow, 2019, 103 pp.

[99] Prikl. Mat. Mekh., 73:4 (2009), 515–519 (Russian)

[100] Borisov, A. V., Mamaev, I. S., Kilin, A. A., Kalinkin, A. A., Trefilov, S. A., and Karavaev, Yu. L., Spherobot, Patent RU 149882 U1, 2013

[101] The Experimental Sample of Spherical Robot with Rotors, , 2012 \goodbreak https://www.youtube.com/watch?v=qDReTsobG3E

[102] Borisov, A. V., Kilin, A. A., and Mamaev, I. S., “How To Control Chaplygin's Sphere Using Rotors”, Regul. Chaotic Dyn., 17:3–4 (2012), 258–272

[103] Borisov, A. V., Kilin, A. A., and Mamaev, I. S., “How To Control the Chaplygin Ball Using Rotors: 2”, Regul. Chaotic Dyn., 18:1–2 (2013), 144–158

[104] Ivanova, T. B. and Pivovarova, E. N., “Comments on the Paper by A. V. Borisov, A. A. Kilin, I. S. Mamaev “How To Control the Chaplygin Ball Using Rotors: 2””, Regul. Chaotic Dyn., 19:1 (2014), 140–143

[105] Selutsky, Yu. D., Simonenko, M. M., Formal'sky, A. M., and Uteshev, A. V., Robot Ball, Patent RU 188214 U1, 2017

[106] Budanov, V. M., Selyutskiy, Yu. D., Formalskii, A. M., “Prevention of Oscillations of a Spherical Robot in Longitudinal Motion”, Journal of Computer and Systems Sciences International, 61:4 (2022), 567–580 (Russian)

[107] Akella, P., O'Reilly, O., and Sreenath, K., “Controlling the Locomotion of Spherical Robots or Why BB-8 Works”, ASME J. Mech. Robot., 11:2 (2019), 024501, 4 pp.

[108] Borisov, A. V., Mamaev, I. S., Kilin, A. A., Kalinkin, A. A., Karavaev, Yu. L., and Klekovkin, A. V., Spherorobot with an Omni-Wheeled Vehicle, Patent RU 158322 U1, 2015

[109] Kilin, A. A., Karavaev, Yu. L., and Klekovkin, A. V., “Kinematic Control of a High Manoeuvrable Mobile Spherical Robot with Internal Omni-Wheeled Platform”, Nelin. Dinam., 10:1 (2014), 113–126 (Russian)

[110] Kilin, A. A. and Karavaev, Yu. L., “The Kinematic Control Model for a Spherical Robot with an Unbalanced Internal Omniwheel Platform”, Nelin. Dinam., 10:4 (2014), 497–511 (Russian)

[111] Karavaev, Yu. L. and Kilin, A. A., “The Dynamics and Control of a Spherical Robot with an Internal Omniwheel Platform”, Regul. Chaotic Dyn., 20:2 (2015), 134–152

[112] Tr. Mat. Inst. Steklova, 295 (2016), 174–183 (Russian)

[113] Chen, W. H., Chen, C. P., Tsai, J. S., Yang, J., and Lin, P. C., “Design and Implementation of a Ball-Driven Omnidirectional Spherical Robot”, Mech. Mach. Theory, 68 (2013), 35–48

[114] Ivanov, A. P., “On the Control of a Robot Ball Using Two Omniwheels”, Regul. Chaotic Dyn., 20:4 (2015), 441–448

[115] Liu, W., Wang, R., Duan, L., Wang, Y., and Wang, J., “Spherical Mobile Robot Driven by Single Omni Wheel”, JRNAL, 6:3 (2019), 167–170

[116] Harmo, P., Halme, A., Pitkänen, H., Virekoski, P., Halinen, M., and Suomela, J., “Moving Eye: Interactive Telepresence over Internet with a Ball Shaped Mobile Robot”, IFAC Proc. Vol., 34:9 (2001), 481–486

[117] Bogatchev, A., Kutcherenko, V., Matrossov, S., Vladykin, S., Petriga, V., Halme, A., Suomela, J., Leppanen, I., Ylonen, S., and Salmi, S., “Joint RCL HUT Developments for Mobile Robot Locomotion Systems During 1995–2002”, Proc. of the 7th ESA Workshop on Advanced Space Technologies for Robotics and Automation “ASTRA 2002” (ESTEC, Noordwijk, Netherlands, Nov 2002), 7 pp.

[118] Spherical Robots, 2012

[119] Popular Science: Video Report, , 2012 https://youtu.be/3K-VAMIWKsQ

[120] Borisov, E. G., Matrossov, S. I., Dobretsov, R. Yu., Kutcherenko, V. I., and Semenov, A. G., Spherical Robot (Variants), Patent RU 2658683 C1, 2016 \enlargethispage*{\baselineskip}

[121] Jatsun, S. F., Savin, S. I., and Kazaryan, K. G., Robot Ball, Patent RU 106215 U1, 2011

[122] Belzile, B. and St-Onge, D., “ARIES: Cylindrical Pendulum Actuated Explorer Sphere”, IEEE/ASME Trans. Mechatronics, v. 27, 2022

[123] Zhao, B., Li, M., Yu, H., Hu, H., and Sun, L., “Dynamics and Motion Control of a Two Pendulums Driven Spherical Robot”, Proc. of the 2010 IEEE/RSJ Internat. Conf. on Intelligent Robots and Systems (IROS) (Taipei, Taiwan, Oct 2010), 147–153

[124] Ghanbari, A., Mahboubi, S., and Fakhrabadi, M. M. S., “Design, Dynamic Modeling and Simulation of a Spherical Mobile Robot with a Novel Motion Mechanism”, Proc. of the IEEE/ASME Internat. Conf. on Mechatronic and Embedded Systems and Applications (Qingdao, China, July 2010), 434–439

[125] Wang, L. and Zhao, B., “Dynamic Modeling and Control Strategy for Turning in Place Motion of a Two-Coaxial Pendulums Driven Spherical Inspector Based on Stick-Slip Principle”, Mech. Mach. Theory, 83 (2015), 69–80

[126] Asiri, S., Khademianzadeh, F., Monadjemi, A., and Moallem, P., “The Design and Development of a Dynamic Model of a Low-Power Consumption, Two-Pendulum Spherical Robot”, IEEE/ASME Trans. Mechatronics, 24 (2019), 2406–2415

[127] Ahn, S.-S. and Lee, Y.-J., “Novel Spherical Robot with Hybrid Pendulum Driving Mechanism”, Adv. Mech. Eng., 2014 (2014), 456727, 14 pp.

[128] DeJong, B. P., Karadogan, E., Yelamarthi, K., and Hasbany, J., “Design and Analysis of a Four-Pendulum Omnidirectional Spherical Robot”, J. Intell. Robot. Syst., 86:1 (2017), 3–15

[129] Kabała, M. and Wnuk, M., Design and Construction of RoBall, a Spherical, Nonholonomic Mobile Robot, Raport serii PRE nr 48/2004, Instytut Cybernetyki Technicznej, Wrocław, 2004, 18 pp.

[130] Ming, Y., Zongquan, D., Xinyi, Y., and Weizhen, Y., “Introducing HIT Spherical Robot: Dynamic Modeling and Analysis Based on Decoupled Subsystem”, Proc. of the IEEE Internat. Conf. on Robotics and Biomimetics (Kunming, China, Dec 2006), 181–186

[131] Jia, Q. X., Sun, H., and Liu, D., “Analysis of Actuation for a Spherical Robot”, Proc. of the IEEE Internat. Conf. on Robotics, Automation and Mechatronics (Chengdu, China, Sept 2008), 266–271

[132] Liu, D.-L., Sun, H.-X., and Jia, Q.-X., “Nonlinear Sliding-Mode Control for Motion of a Spherical Robot”, Proc. of the 29th Chinese Control Conference (Beijing, China, July 2010), 3244–3249

[133] Tsai, Ch.-E., Hsiao, Ch.-Ch., Chang, F.-Y., Lan, L.-L., and Tu, J.-Y., “Gimbal Structure for the Design of 3D Flywheel System”, Int. J. Mech. Mechatron. Eng., 9:6 (2015), 1125–1130

[134] Lee, J. and Park, W., “Design and Path Planning for a Spherical Rolling Robot”, ASME Internat. Mechanical Engineering Congress and Exposition (San Diego, Calif., Nov 2013), v. 4A, Dynamics, Vibration and Control, 8 pp.

[135] Nadeina, L. I., Robot Ball, Patent RU 2315686 C2, 2017

[136] Tomic, F., Nudehi, S., Flynn, L. L., and Mukherjee, R., “Design, Fabrication and Control of Spherobot: A Spherical Mobile Robot”, J. Intell. Robot. Syst., 67 (2012), 117–131

[137] Javadi, A. and Mojabi, P., “Introducing Glory: A Novel Strategy for an Omnidirectional Spherical Rolling Robot”, J. Dyn. Syst. Meas. Control Trans. ASME, 126:3 (2004), 678–683

[138] Sang, Sh., Zhao, J., Wu, H., Chen, S., and An, Q., “Modeling and Simulation of a Spherical Mobile Robot”, ComSIS, 7:1 (2010), 51–62

[139] Su, B. and Wang, T., “Motion Control for a Novel Rolling Robot with Three Sliders”, ACC'2012: American Control Conference (Montreal, QC, Canada, Jun 2012), 4855–4860

[140] Chen, M., Sun, W., Gao, Y., Zhan, Sh., Zhang, Sh., and Li, W. J., “Development of a Holonomic Mobile Spherical Robot with 3D Center of Gravity Shifting Actuators”, Proc. of the IEEE Internat. Conf. on Robotics and Biomimetics (Qingdao, China, Dec 2016), 438–442

[141] Camilleri, W. V. and Sampaio, D., Making Hortum Machina B, , 2016 http://www.interactivearchitecture.org/the-making-of-hortum-machina-b.html

[142] Burkhardt, M. R. and Burdick, J. W., “Reduced Dynamical Equations for Barycentric Spherical Robots”, Proc. of the IEEE Internat. Conf. on Robotics and Automation (Stockholm, Sweden, 2016), 2725–2732

[143] Prokopovich, G. A., Robot Ball, Patent RU 2600043 C2, 2015

[144] Prokopovich, G. A., “Mobile Robot with Zero-Turn”, Robototekhnika i Tekhn. Kibernetika, 2015, no. 2 (7), 39–44

[145] Karadogan, E. and DeJong, B., “Design of a Spherical Robot with Cable-Actuated Driving Mechanism”, Proc. of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (Cleveland, Ohio, Aug 2017), v. 5A, 41st Mechanisms and Robotics Conference, V05AT08A037

[146] Tafrishi, S. A., Svinin, M., Esmaeilzadeh, E., and Yamamoto, M., “Design, Modeling, and Motion Analysis of a Novel Fluid Actuated Spherical Rolling Robot”, ASME J. Mech. Robot., 11:4 (2019), 041010, 10 pp.

[147] Sugiyama, Y. and Hirai, S., “Crawling and Jumping by a Deformable Robot”, Int. J. Robot. Res., 25 (2006), 603–620

[148] Sugiyama, Y., Shiotsu, A., Yamanaka, M., and Hirai, S., “Circular/Spherical Robots for Crawling and Jumping”, Proc. of the 2005 IEEE International Conference on Robotics and Automation (Barcelona, Spain, Apr 2005), 3595–3600

[149] Mozeika, A., Steltz, E., and Jaeger, H. M., “The First Steps of a Robot Based on Jamming Skin Enabled Locomotion”, IEEE Internat. Conf. on Intelligent Robots and Systems (St. Louis, MO, 2009), 408–409

[150] Wait, K. W., Jackson, P. J., and Smoot, L. S., “Self Locomotion of a Spherical Rolling Robot Using a Novel Deformable Pneumatic Method”, Proc. of the IEEE Internat. Conf. on Robotics and Automation (Anchorage, Alaska, 2010), 3757–3762

[151] Kangi, A., “Wormsphere Rover Pattern for Discovering Underground Water on Mars Surface”, J. Br. Interplanet. Soc., 57:9–10 (2004), 298–300

[152] Artusi, M., Potz, M., Aristizabal, J., Menon, C., Cocuzza, S., and Debei, S., “Electroactive Elastomeric Actuators for the Implementation of a Deformable Spherical Rover”, IEEE/ASME Trans. Mechatronics, 16:1 (2011), 50–57

[153] Fang, X. and Zhou, Sh., Spherical Robot with Soft Shell, Patent B62D57/02, 2011

[154] Gheorghe, V., Alexandrescu, N., Duminica, D., and Cartal, L. A., “Rolling Robot with Radial Extending Legs”, Proc. of the 3rd Internat. Symp. on Resilient Control Systems (ISRCS, Idaho Falls, ID, Aug 2010), 107–112

[155] Coyte, C., Beckerleg, M., and Collins, J., “Spike: A Six Legged Cube Style Robot, in Intelligent Robotics and Applications (ICIRA'2009)”, Lecture Notes in Comput. Sci., v. 5928, eds. M. Xie, Y. Xiong, C. Xiong, H. Liu, Z. Hu, Springer, Berlin, 2009, 535–544

[156] Vespignani, M., Friesen, J., SunSpiral, V., and Bruce, J., “Design of SUPERball v2, a Compliant Tensegrity Robot for Absorbing Large Impacts”, Proc. of the IEEE/RSJ Internat. Conf. on Intelligent Robots and Systems (IROS, Madrid, Spain, Oct 2018), 2865–2871

[157] Dylan, S., Booth, J., Baines, R. L., Wang, K., Vespignani, M., Bekris, K., and Kramer-Bottiglio, R., “Tensegrity Robotics”, Soft Robotics, 9:4 (2022), 639–656

[158] Ishikawa, M., Kitayoshi, R., and Sugie, T., “Volvot: A Spherical Mobile Robot with Eccentric Twin Rotors”, Proc. of the IEEE Internat. Conf. on Robotics and Biomimetics (Phuket, Thailand, Dec 2011), 1462–1467

[159] Hu, Y., Wei, Y., and Liu, M., “Design and Performance Evaluation of a Spherical Robot Assisted by High-Speed Rotating Flywheels for Self-Stabilization and Obstacle Surmounting”, J. Mech. Robot., 2021, no. 13, 1–17

[160] Borisov, A. V., Mamaev, I. S., Kilin, A. A., Kalinkin, A. A., Karavaev, Yu. L., and Klekovkin, A. V., Spherorobot with Combined Drive, Patent RU 197028 U1, 2019

[161] Kilin, A. A. and Karavaev, Yu. L., “Experimental Research of Dynamic of Spherical Robot of Combined Type”, Nelin. Dinam., 11:4 (2015), 721–734 (Russian \enlargethispage*{\baselineskip})

[162] Ivanova, T. B. and Pivovarova, E. N., “Dynamics and Control of a Spherical Robot with an Axisymmetric Pendulum Actuator”, Nelin. Dinam., 9:3 (2013), 507–520 (Russian)

[163] Ivanova, T. B., Karavaev, Yu. L., and Kilin, A. A., “Control of a Pendulum-Actuated Spherical Robot on a Horizontal Plane with Rolling Resistance”, Arch. Appl. Mech., 92:1 (2022), 137–150

[164] Kilin, A. A., Pivovarova, E. N., and Ivanova, T. B., “Spherical Robot of Combined Type: Dynamics and Control”, Regul. Chaotic Dyn., 20:6 (2015), 716–728

[165] Borisov, A. V., Kilin, A. A., Karavaev, Yu. L., and Klekovkin, A. V., “Stabilization of the Motion of a Spherical Robot Using Feedbacks”, Appl. Math. Model., 69 (2019), 583–592

[166] Gyrostabilized Spherical Vehicle, , 2022 https://youtu.be/VhlOq7vxejQ

[167] Zhang, Sh., Fang, X., Zhou, Sh., and Du, K., “Kinetic Model for a Spherical Rolling Robot with Soft Shell in a Beeline Motion”, J. Multimed., 9:2 (2014), 223–229

[168] Mahboubi, S., Fakhrabadi, M. M. S., and Ghanbari, A., “Design and Implementation of a Novel Hybrid Quadruped Spherical Mobile Robot”, Robot. Auton. Syst., 61:2 (2013), 184–194

[169] Kim, Y.-M., Ahn, S.-S., and Lee, Y., “KisBot: New Spherical Robot with Arms”, Proc. of the 10th WSEAS Internat. Conf. on Robotics, Control and Manufacturing Technology (ROCOM'10, Hangzhou, China, Apr 2010), 63–67

[170] Phipps, C. C. and Minor, M. A., “Introducing the Hex-a-Ball, a Hybrid Locomotion Terrain Adaptive Walking and Rolling Robot”, Climbing and Walking Robots, eds. M. O. Tokhi, G. S. Virk, M. A. Hossain, Springer, Berlin, 2006, 525–532

[171] MorpHex, the Incredible Hexapod Robot, , 2014 https://youtu.be/yn3FWb-vQQ4

[172] The 2022 IEEE/RSJ Internat. Conf. on Intelligent Robots and Systems (IROS, Kyoto, Japan, Oct 2022): Robots and Future Technologies: TumbelBot Robot, , 2022 https://youtu.be/BQpLwT7bcdE?t=696

[173] Chi, X. and Zhan, Q., “Design and Modelling of an Amphibious Spherical Robot Attached with Assistant Fins”, Appl. Sci., 11:9 (2021), 3739, 21 pp.

[174] Yue, Ch., Guo, Sh., Li, M., Li, Y., Hirata, H., and Ishihara, H., “Mechatronic System and Experiments of a Spherical Underwater Robot: SUR-II”, J. Intell. Robot. Syst., 80:2 (2015), 325–340

[175] Briod, A., Kornatowski, P., Zufferey, J. C., and Floreano, D., “A Collision-Resilient Flying Robot”, J. Field Robot., 31:4 (2014), 496–509

[176] Phalak, Y., Design, Modelling and Control of SPIROS: The Six Propellers and Intermeshing Rotors Based Omnidirectional Spherical Robot, 2021, 10 pp., arXiv: 2107.00621 [cs.RO]

[177] Dudley, Ch. J., Woods, A. C., and Leang, K. K., “A Micro Spherical Rolling and Flying Robot”, Proc. of the IEEE/RSJ Internat. Conf. on Intelligent Robots and Systems (IROS, Hamburg, Germany, 2015), 5863–5869