Dynamics-Based Piecewise Constant Control
Russian journal of nonlinear dynamics, Tome 18 (2022) no. 4, pp. 661-680.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the dynamics of an omnidirectional vehicle moving on a perfectly rough horizontal plane. The vehicle has three omniwheels controlled by three direct current motors. We study constant voltage dynamics for the symmetric model of the vehicle and get a general analytical solution for arbitrary initial conditions which is shown to be Lyapunov stable. Piecewise combination of the trajectories produces a solution to boundary-value problems for arbitrary initial and terminal mass center coordinates, course angles and their derivatives with one switch point. The proposed control combining translation and rotation of the vehicle is shown to be more energy-efficient than a control splitting these two types of motion. For the nonsymmetrical vehicle configuration, we propose a numerical procedure of solving boundary-value problems that uses parametric continuation of the solution obtained for the symmetric vehicle. It shows that the proposed type of control can be used for an arbitrary vehicle configuration.
Keywords: omnidirectional vehicle, omniwheel, universal wheel, dynamics-based control, piecewise control, point-to-point path planning.
@article{ND_2022_18_4_a13,
     author = {G. N. Moiseev and A. A. Zobova},
     title = {Dynamics-Based {Piecewise} {Constant} {Control}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {661--680},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2022_18_4_a13/}
}
TY  - JOUR
AU  - G. N. Moiseev
AU  - A. A. Zobova
TI  - Dynamics-Based Piecewise Constant Control
JO  - Russian journal of nonlinear dynamics
PY  - 2022
SP  - 661
EP  - 680
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2022_18_4_a13/
LA  - en
ID  - ND_2022_18_4_a13
ER  - 
%0 Journal Article
%A G. N. Moiseev
%A A. A. Zobova
%T Dynamics-Based Piecewise Constant Control
%J Russian journal of nonlinear dynamics
%D 2022
%P 661-680
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2022_18_4_a13/
%G en
%F ND_2022_18_4_a13
G. N. Moiseev; A. A. Zobova. Dynamics-Based Piecewise Constant Control. Russian journal of nonlinear dynamics, Tome 18 (2022) no. 4, pp. 661-680. http://geodesic.mathdoc.fr/item/ND_2022_18_4_a13/

[1] Mohammadpour, M., Zeghmi, L., Kelouwani, S., Gaudreau, M.-A., Amamou, A., and Graba, M., “An Investigation into the Energy-Efficient Motion of Autonomous Wheeled Mobile Robots”, Energies, 14:12 (2021), 3517, 19 pp.

[2] Yang, S., Lu, Y., and Li, S., “An Overview on Vehicle Dynamics”, Int. J. Dynam. Control, 1:4 (2013), 385–395

[3] Taheri, H. and Zhao, C. X., “Omnidirectional Mobile Robots, Mechanisms and Navigation Approaches”, Mech. Mach. Theory, 153:2 (2020), 103958

[4] Grabowfecki, J., Vehicle Wheel, Patent US No. 1 305 535, 1918

[5] Blumrich, J., Omnidirectional Wheel, Patent US No. 3 789 947A, 1972

[6] Campion, G., Bastin, G., and d'Andréa-Novel, B., “Structural Properties and Classification of Kinematic and Dynamic Models of Wheeled Mobile Robots”, IEEE Trans. Robot. Autom., 12:1 (1996), 47–62

[7] Damoto, R., Cheng, W., and Hirose, S., “Holonomic Omnidirectional Vehicle with New Omni-Wheel Mechanism”, Proc. of the IEEE Internat. Conf. on Robotics and Automation (ICRA'2001), v. 1, 773–778

[8] Terakawa, T., Komori, M., Yamaguchi, Y., and Nishida, Y., “Active Omni Wheel Possessing Seamless Periphery and Omnidirectional Vehicle Using It”, Precis. Eng., 56 (2019), 466–475

[9] Shen, J. and Hong, D., “OmBURo: A Novel Unicycle Robot with Active Omnidirectional Wheel”, Proc. of the IEEE Internat. Conf. on Robotics and Automation (ICRA'2020), 8237–8243

[10] De Luca, A., Oriolo, G., and Vendittelli, M., “Control of Wheeled Mobile Robots: An Experimental Overview”, Ramsete, Lect. Notes Control Inf. Sci., 270, eds. S. Nicosia, B. Siciliano, A. Bicchi, P. Valigi, Springer, Berlin, 2001, 181–226

[11] Liu, Y., Jim Zhu, J., Williams, R. L., and Wu, J., “Omni-Directional Mobile Robot Controller Based on Trajectory Linearization”, Robot. Auton. Syst., 56:5 (2008), 461–477

[12] Kilin, A. A. and Bobykin, A. D., “Control of a Vehicle with Omniwheels on a Plane”, Nelin. Dinam., 10:4 (2014), 473–481 (Russian)

[13] Liu, X., Chen, H., Wang, C., Hu, F., and Yang, X., “MPC Control and Path Planning of Omni-Directional Mobile Robot with Potential Field Method”, Intelligent Robotics and Applications (ICIRA'2018), Lect. Notes Comput. Sci., 10985, eds. Z. Chen, A. Mendes, Y. Yan, S. Chen, Springer, Cham, 2018

[14] Rani, M., Kumar, N., and Singh, H. P., “Force/Motion Control of Constrained Mobile Manipulators including Actuator Dynamics”, Int. J. Dyn. Control, 7:3 (2019), 940–954

[15] Andreev, A. S. and Peregudova, O. A., “On Global Trajectory Tracking Control for an Omnidirectional Mobile Robot with a Displaced Center of Mass”, Russian J. Nonlinear Dyn., 16:1 (2020), 115–131

[16] Khesrani, S., Hassam, A., Boutalbi, O., and Boubezoula, M., “Motion Planning and Control of Nonholonomic Mobile Robot Using Flatness and Fuzzy Logic Concepts”, Int. J. Dyn. Control, 9:4 (2021), 1660–1671

[17] Kalmár-Nagy, T., D'Andrea, R., and Ganguly, P., “Near-Optimal Dynamic Trajectory Generation and Control of an Omnidirectional Vehicle”, Robot. Auton. Syst., 46:1 (2004), 47–64

[18] Zeidis, I. and Zimmermann, K., “Dynamics of a Four-Wheeled Mobile Robot with Mecanum Wheels”, ZAMM Z. Angew. Math. Mech., 99:12 (2019), e201900173, 22 pp.

[19] Nelin. Dinam., 7:4 (2011), 785–801 (Russian)

[20] Adamov, B. I., “A Study of the Controlled Motion of a Four-Wheeled Mecanum Platform”, Russian J. Nonlinear Dyn., 14:2 (2018), 265–290

[21] Izv. Ross. Akad. Nauk. Teor. Sist. Upr., 6 (2007), 142–149 (Russian)

[22] Zobova, A. A., “Application of Laconic Forms of the Equations of Motion in the Dynamics of Nonholonomic Mobile Robots”, Nelin. Dinam., 7:4 (2011), 771–783 (Russian)

[23] Prikl. Mat. Mekh., 73:1 (2009), 13–22 (Russian)

[24] Kosenko, I. I. and Gerasimov, K. V., “Physically Oriented Simulation of the Omnivehicle Dynamics”, Nelin. Dinam., 12:2 (2016), 251–262 (Russian)

[25] Prikl. Mat. Mekh., 82:4 (2018), 427–440

[26] Vestn. Mosk. Univ. Ser. 1. Mat. Mekh., 73:6 (2018), 78–82 (Russian)

[27] Nascimento, T. P., Dórea, C. E. T., and Gonçalves, L. M. G., “Nonholonomic Mobile Robots' Trajectory Tracking Model Predictive Control: A Survey”, Robotica, 36:5 (2018), 676–696

[28] Adamov, B. I. and Saypulaev, G. R., “Research on the Dynamics of an Omnidirectional Platform Taking into Account Real Design of Mecanum Wheels (As Exemplified by KUKA youBot)”, Russian J. Nonlinear Dyn., 16:2 (2020), 291–307

[29] Kilin, A., Bozek, P., Karavaev, Yu., Klekovkin, A., and Shestakov, V., “Experimental Investigations of a Highly Maneuverable Mobile Omniwheel Robot”, Int. J. Adv. Robot. Syst., 14:6 (2017), 1–9

[30] Tatarinov, Ya. V., “Equations of Classical Mechanics in New Form”, Vestn. Mosk. Univ. Ser. 1. Mat. Mekh., 3 (2003), 67–76 (Russian)

[31] https://www.qt.io

[32] http://www.qcustomplot.com

[33] https://www.gnu.org/software/gsl/

[34] Hairer, E., Nørsett, S. P., and Wanner, G., Solving Ordinary Differential Equations, v. 1, Springer Ser. Comput. Math., 8, Nonstiff Problems, 2nd ed., Springer, New York, 1993, xvi+528 pp.