Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2022_18_4_a13, author = {G. N. Moiseev and A. A. Zobova}, title = {Dynamics-Based {Piecewise} {Constant} {Control}}, journal = {Russian journal of nonlinear dynamics}, pages = {661--680}, publisher = {mathdoc}, volume = {18}, number = {4}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2022_18_4_a13/} }
G. N. Moiseev; A. A. Zobova. Dynamics-Based Piecewise Constant Control. Russian journal of nonlinear dynamics, Tome 18 (2022) no. 4, pp. 661-680. http://geodesic.mathdoc.fr/item/ND_2022_18_4_a13/
[1] Mohammadpour, M., Zeghmi, L., Kelouwani, S., Gaudreau, M.-A., Amamou, A., and Graba, M., “An Investigation into the Energy-Efficient Motion of Autonomous Wheeled Mobile Robots”, Energies, 14:12 (2021), 3517, 19 pp.
[2] Yang, S., Lu, Y., and Li, S., “An Overview on Vehicle Dynamics”, Int. J. Dynam. Control, 1:4 (2013), 385–395
[3] Taheri, H. and Zhao, C. X., “Omnidirectional Mobile Robots, Mechanisms and Navigation Approaches”, Mech. Mach. Theory, 153:2 (2020), 103958
[4] Grabowfecki, J., Vehicle Wheel, Patent US No. 1 305 535, 1918
[5] Blumrich, J., Omnidirectional Wheel, Patent US No. 3 789 947A, 1972
[6] Campion, G., Bastin, G., and d'Andréa-Novel, B., “Structural Properties and Classification of Kinematic and Dynamic Models of Wheeled Mobile Robots”, IEEE Trans. Robot. Autom., 12:1 (1996), 47–62
[7] Damoto, R., Cheng, W., and Hirose, S., “Holonomic Omnidirectional Vehicle with New Omni-Wheel Mechanism”, Proc. of the IEEE Internat. Conf. on Robotics and Automation (ICRA'2001), v. 1, 773–778
[8] Terakawa, T., Komori, M., Yamaguchi, Y., and Nishida, Y., “Active Omni Wheel Possessing Seamless Periphery and Omnidirectional Vehicle Using It”, Precis. Eng., 56 (2019), 466–475
[9] Shen, J. and Hong, D., “OmBURo: A Novel Unicycle Robot with Active Omnidirectional Wheel”, Proc. of the IEEE Internat. Conf. on Robotics and Automation (ICRA'2020), 8237–8243
[10] De Luca, A., Oriolo, G., and Vendittelli, M., “Control of Wheeled Mobile Robots: An Experimental Overview”, Ramsete, Lect. Notes Control Inf. Sci., 270, eds. S. Nicosia, B. Siciliano, A. Bicchi, P. Valigi, Springer, Berlin, 2001, 181–226
[11] Liu, Y., Jim Zhu, J., Williams, R. L., and Wu, J., “Omni-Directional Mobile Robot Controller Based on Trajectory Linearization”, Robot. Auton. Syst., 56:5 (2008), 461–477
[12] Kilin, A. A. and Bobykin, A. D., “Control of a Vehicle with Omniwheels on a Plane”, Nelin. Dinam., 10:4 (2014), 473–481 (Russian)
[13] Liu, X., Chen, H., Wang, C., Hu, F., and Yang, X., “MPC Control and Path Planning of Omni-Directional Mobile Robot with Potential Field Method”, Intelligent Robotics and Applications (ICIRA'2018), Lect. Notes Comput. Sci., 10985, eds. Z. Chen, A. Mendes, Y. Yan, S. Chen, Springer, Cham, 2018
[14] Rani, M., Kumar, N., and Singh, H. P., “Force/Motion Control of Constrained Mobile Manipulators including Actuator Dynamics”, Int. J. Dyn. Control, 7:3 (2019), 940–954
[15] Andreev, A. S. and Peregudova, O. A., “On Global Trajectory Tracking Control for an Omnidirectional Mobile Robot with a Displaced Center of Mass”, Russian J. Nonlinear Dyn., 16:1 (2020), 115–131
[16] Khesrani, S., Hassam, A., Boutalbi, O., and Boubezoula, M., “Motion Planning and Control of Nonholonomic Mobile Robot Using Flatness and Fuzzy Logic Concepts”, Int. J. Dyn. Control, 9:4 (2021), 1660–1671
[17] Kalmár-Nagy, T., D'Andrea, R., and Ganguly, P., “Near-Optimal Dynamic Trajectory Generation and Control of an Omnidirectional Vehicle”, Robot. Auton. Syst., 46:1 (2004), 47–64
[18] Zeidis, I. and Zimmermann, K., “Dynamics of a Four-Wheeled Mobile Robot with Mecanum Wheels”, ZAMM Z. Angew. Math. Mech., 99:12 (2019), e201900173, 22 pp.
[19] Nelin. Dinam., 7:4 (2011), 785–801 (Russian)
[20] Adamov, B. I., “A Study of the Controlled Motion of a Four-Wheeled Mecanum Platform”, Russian J. Nonlinear Dyn., 14:2 (2018), 265–290
[21] Izv. Ross. Akad. Nauk. Teor. Sist. Upr., 6 (2007), 142–149 (Russian)
[22] Zobova, A. A., “Application of Laconic Forms of the Equations of Motion in the Dynamics of Nonholonomic Mobile Robots”, Nelin. Dinam., 7:4 (2011), 771–783 (Russian)
[23] Prikl. Mat. Mekh., 73:1 (2009), 13–22 (Russian)
[24] Kosenko, I. I. and Gerasimov, K. V., “Physically Oriented Simulation of the Omnivehicle Dynamics”, Nelin. Dinam., 12:2 (2016), 251–262 (Russian)
[25] Prikl. Mat. Mekh., 82:4 (2018), 427–440
[26] Vestn. Mosk. Univ. Ser. 1. Mat. Mekh., 73:6 (2018), 78–82 (Russian)
[27] Nascimento, T. P., Dórea, C. E. T., and Gonçalves, L. M. G., “Nonholonomic Mobile Robots' Trajectory Tracking Model Predictive Control: A Survey”, Robotica, 36:5 (2018), 676–696
[28] Adamov, B. I. and Saypulaev, G. R., “Research on the Dynamics of an Omnidirectional Platform Taking into Account Real Design of Mecanum Wheels (As Exemplified by KUKA youBot)”, Russian J. Nonlinear Dyn., 16:2 (2020), 291–307
[29] Kilin, A., Bozek, P., Karavaev, Yu., Klekovkin, A., and Shestakov, V., “Experimental Investigations of a Highly Maneuverable Mobile Omniwheel Robot”, Int. J. Adv. Robot. Syst., 14:6 (2017), 1–9
[30] Tatarinov, Ya. V., “Equations of Classical Mechanics in New Form”, Vestn. Mosk. Univ. Ser. 1. Mat. Mekh., 3 (2003), 67–76 (Russian)
[31] https://www.qt.io
[32] http://www.qcustomplot.com
[33] https://www.gnu.org/software/gsl/
[34] Hairer, E., Nørsett, S. P., and Wanner, G., Solving Ordinary Differential Equations, v. 1, Springer Ser. Comput. Math., 8, Nonstiff Problems, 2nd ed., Springer, New York, 1993, xvi+528 pp.