Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2022_18_4_a12, author = {A. V. Shatina and M. I. Djioeva and L. S. Osipova}, title = {Mathematical {Model} of {Satellite} {Rotation} near}, journal = {Russian journal of nonlinear dynamics}, pages = {651--660}, publisher = {mathdoc}, volume = {18}, number = {4}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2022_18_4_a12/} }
TY - JOUR AU - A. V. Shatina AU - M. I. Djioeva AU - L. S. Osipova TI - Mathematical Model of Satellite Rotation near JO - Russian journal of nonlinear dynamics PY - 2022 SP - 651 EP - 660 VL - 18 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2022_18_4_a12/ LA - en ID - ND_2022_18_4_a12 ER -
A. V. Shatina; M. I. Djioeva; L. S. Osipova. Mathematical Model of Satellite Rotation near. Russian journal of nonlinear dynamics, Tome 18 (2022) no. 4, pp. 651-660. http://geodesic.mathdoc.fr/item/ND_2022_18_4_a12/
[1] Pettengill, G. H. and Dyce, R. B., “A Radar Determination of the Rotation of the Planet Mercury”, Nature, 206 (1965), 1240
[2] Murray, C. D. and Dermott, S. F., Solar System Dynamics, Cambridge Univ. Press, Cambridge, 2000, 608 pp.
[3] Beletskii, V. V., Motion of an Artificial Satellite about Its Center of Mass, Israel Program for Scientific Translations, Jerusalem, 1966, x, 261 pp.
[4] Zh. Vychisl. Mat. Mat. Fiz., 3:3 (1963), 528–538 (Russian)
[5] Kosmicheskie Issledovaniya, 40:3 (2002), 295–316 (Russian)
[6] Kosmicheskie Issledovaniya, 44:2 (2006), 170–181 (Russian)
[7] Prikl. Mat. Mekh., 72:5 (2008), 707–720 (Russian)
[8] Prikl. Mat. Mekh., 75:2 (2011), 204–223 (Russian)
[9] Vil'ke, V. G., Analytical Mechanics of Systems with an Infinite Number of Degrees of Freedom: In 2 Vols., MGU, Moscow, 1997, 376 pp. (Russian)
[10] Prikl. Mat. Mekh., 83:1 (2019), 32–38 (Russian \goodbreak)
[11] Kosmicheskie Issledovaniya, 37:3 (1999), 289–295 (Russian)
[12] Chernous'ko, F. L., Akulenko, L. D., and Leshchenko, D. D., Evolution of Motions of a Rigid Body about Its Center of Mass, Springer, Cham, 2017, XXXVIII, 241 pp.
[13] Karapetyan, A. V., Stability and Bifurcation of Motions, MGU, Moscow, 2020, 188 pp. (Russian)