Construction of Inhomogeneous Velocity Fields
Russian journal of nonlinear dynamics, Tome 18 (2022) no. 3, pp. 441-464.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we present a method for constructing inhomogeneous velocity fields of an incompressible fluid using expansions in terms of eigenfunctions of the Laplace operator whose weight coefficients are determined from the problem of minimizing the integral of the squared divergence. A number of examples of constructing the velocity fields of plane-parallel and axisymmetric flows are considered. It is shown that the problem of minimizing the integral value of divergence is incorrect and requires regularization. In particular, we apply Tikhonov’s regularization method. The method proposed in this paper can be used to generate different initial conditions in investigating the nonuniqueness of the solution to the Navier – Stokes equations.
Keywords: inhomogeneous velocity field, expansion in terms of eigenfunctions, ill-conditioned system of linear algebraic equations.
@article{ND_2022_18_3_a8,
     author = {E. V. Vetchanin and E. A. Portnov},
     title = {Construction of {Inhomogeneous} {Velocity} {Fields}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {441--464},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2022_18_3_a8/}
}
TY  - JOUR
AU  - E. V. Vetchanin
AU  - E. A. Portnov
TI  - Construction of Inhomogeneous Velocity Fields
JO  - Russian journal of nonlinear dynamics
PY  - 2022
SP  - 441
EP  - 464
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2022_18_3_a8/
LA  - en
ID  - ND_2022_18_3_a8
ER  - 
%0 Journal Article
%A E. V. Vetchanin
%A E. A. Portnov
%T Construction of Inhomogeneous Velocity Fields
%J Russian journal of nonlinear dynamics
%D 2022
%P 441-464
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2022_18_3_a8/
%G en
%F ND_2022_18_3_a8
E. V. Vetchanin; E. A. Portnov. Construction of Inhomogeneous Velocity Fields. Russian journal of nonlinear dynamics, Tome 18 (2022) no. 3, pp. 441-464. http://geodesic.mathdoc.fr/item/ND_2022_18_3_a8/

[1] Izv. Akad. Nauk SSSR Mekh. Zhidk. Gaza, 1977, no. 6, 57–65 (Russian) | DOI | MR

[2] Izv. Akad. Nauk SSSR Fiz. Atmos. Okeana, 15:1 (1979), 29–35 (Russian)

[3] Borisov, A. V., Kilin, A. A., and Mamaev, I. S., “A New Integrable Problem of Motion of Point Vortices on the Sphere”, Nelin. Dinam., 3:2 (2007), 211–223 (Russian) | DOI | MR

[4] Borisov, A. V. and Mamaev, I. S., Mathematical Methods in the Dynamics of Vortex Structures, R Dynamics, Institute of Computer Science, Izhevsk, 2005, 368 pp. (Russian) | MR

[5] Brady, J. F. and Acrivos, A., “Steady Flow in a Channel or Tube with an Accelerating Surface Velocity. An Exact Solution to the Navier – Stokes Equations with Reverse Flow”, J. Fluid Mech., 112 (1981), 127–150 | DOI | MR | Zbl

[6] Holodniok, M., Kubíček, M., and Hlaváček, V., “Computation of the Flow between Two Rotating Coaxial Disks”, J. Fluid Mech., 81:4 (1977), 689–699 | DOI | MR | Zbl

[7] Holodniok, M., Kubíček, M., and Hlaváček, V., “Computation of the Flow between Two Rotating Coaxial Disks: Multiplicity of Steady-State Solutions”, J. Fluid Mech., 108 (1981), 227–240 | DOI | Zbl

[8] Kamenetskiy, D. S., Bussoletti, J. E., Hilmes, C. L., Venkatakrishnan, V., Wigton, L. B., and Johnson, F. T., “Numerical Evidence of Multiple Solutions for the Reynolds-Averaged Navier – Stokes Equations”, AIAA J., 52:8 (2014), 1686–1698 | DOI

[9] Kempka, S. N., Glass, M. W., Peery, J. S., Strickland, J. H., and Ingber, M. S., Accuracy Considerations for Implementing Velocity Boundary Conditions in Vorticity Formulations, Sandia Report No. SAND-96-0583, Sandia National Lab.(SNL-NM), Albuquerque, N.M., 1996, 53 pp.

[10] Kochin, N. E., Vector Calculus and the Principles of Tensor Calculus, Nauka, Moscow, 1965, 427 pp. (Russian) | MR

[11] Miklavčič, M. and Wang, C., “Viscous Flow due to a Shrinking Sheet”, Quart. Appl. Math., 64:2 (2006), 283–290 | DOI | MR | Zbl

[12] Phillips, D. L., “A Technique for the Numerical Solution of Certain Integral Equations of the First Kind”, J. Assoc. Comput. Mach., 9 (1962), 84–97 | DOI | MR | Zbl

[13] Tikhonov, A. N., “On Incorrect Problems of Linear Algebra and a Stable Method for Their Solution”, Dokl. Akad. Nauk SSSR, 163:3 (1965), 591–594 (Russian) | MR | Zbl

[14] Tikhonov, A. N. and Arsenin, V. Ya., Methods for Solving Incorrectly Posed Problems, 2nd ed., Nauka, Moscow, 1979, 288 pp. (Russian) | MR

[15] Watson, E. B. B., Banks, W. H. H., Zaturska, M. B., and Drazin, P. G., “On Transition to Chaos in Two-Dimensional Channel Flow Symmetrically Driven by Accelerating Walls”, J. Fluid Mech., 212 (1990), 451–485 | DOI | MR | Zbl