Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2022_18_3_a8, author = {E. V. Vetchanin and E. A. Portnov}, title = {Construction of {Inhomogeneous} {Velocity} {Fields}}, journal = {Russian journal of nonlinear dynamics}, pages = {441--464}, publisher = {mathdoc}, volume = {18}, number = {3}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2022_18_3_a8/} }
E. V. Vetchanin; E. A. Portnov. Construction of Inhomogeneous Velocity Fields. Russian journal of nonlinear dynamics, Tome 18 (2022) no. 3, pp. 441-464. http://geodesic.mathdoc.fr/item/ND_2022_18_3_a8/
[1] Izv. Akad. Nauk SSSR Mekh. Zhidk. Gaza, 1977, no. 6, 57–65 (Russian) | DOI | MR
[2] Izv. Akad. Nauk SSSR Fiz. Atmos. Okeana, 15:1 (1979), 29–35 (Russian)
[3] Borisov, A. V., Kilin, A. A., and Mamaev, I. S., “A New Integrable Problem of Motion of Point Vortices on the Sphere”, Nelin. Dinam., 3:2 (2007), 211–223 (Russian) | DOI | MR
[4] Borisov, A. V. and Mamaev, I. S., Mathematical Methods in the Dynamics of Vortex Structures, R Dynamics, Institute of Computer Science, Izhevsk, 2005, 368 pp. (Russian) | MR
[5] Brady, J. F. and Acrivos, A., “Steady Flow in a Channel or Tube with an Accelerating Surface Velocity. An Exact Solution to the Navier – Stokes Equations with Reverse Flow”, J. Fluid Mech., 112 (1981), 127–150 | DOI | MR | Zbl
[6] Holodniok, M., Kubíček, M., and Hlaváček, V., “Computation of the Flow between Two Rotating Coaxial Disks”, J. Fluid Mech., 81:4 (1977), 689–699 | DOI | MR | Zbl
[7] Holodniok, M., Kubíček, M., and Hlaváček, V., “Computation of the Flow between Two Rotating Coaxial Disks: Multiplicity of Steady-State Solutions”, J. Fluid Mech., 108 (1981), 227–240 | DOI | Zbl
[8] Kamenetskiy, D. S., Bussoletti, J. E., Hilmes, C. L., Venkatakrishnan, V., Wigton, L. B., and Johnson, F. T., “Numerical Evidence of Multiple Solutions for the Reynolds-Averaged Navier – Stokes Equations”, AIAA J., 52:8 (2014), 1686–1698 | DOI
[9] Kempka, S. N., Glass, M. W., Peery, J. S., Strickland, J. H., and Ingber, M. S., Accuracy Considerations for Implementing Velocity Boundary Conditions in Vorticity Formulations, Sandia Report No. SAND-96-0583, Sandia National Lab.(SNL-NM), Albuquerque, N.M., 1996, 53 pp.
[10] Kochin, N. E., Vector Calculus and the Principles of Tensor Calculus, Nauka, Moscow, 1965, 427 pp. (Russian) | MR
[11] Miklavčič, M. and Wang, C., “Viscous Flow due to a Shrinking Sheet”, Quart. Appl. Math., 64:2 (2006), 283–290 | DOI | MR | Zbl
[12] Phillips, D. L., “A Technique for the Numerical Solution of Certain Integral Equations of the First Kind”, J. Assoc. Comput. Mach., 9 (1962), 84–97 | DOI | MR | Zbl
[13] Tikhonov, A. N., “On Incorrect Problems of Linear Algebra and a Stable Method for Their Solution”, Dokl. Akad. Nauk SSSR, 163:3 (1965), 591–594 (Russian) | MR | Zbl
[14] Tikhonov, A. N. and Arsenin, V. Ya., Methods for Solving Incorrectly Posed Problems, 2nd ed., Nauka, Moscow, 1979, 288 pp. (Russian) | MR
[15] Watson, E. B. B., Banks, W. H. H., Zaturska, M. B., and Drazin, P. G., “On Transition to Chaos in Two-Dimensional Channel Flow Symmetrically Driven by Accelerating Walls”, J. Fluid Mech., 212 (1990), 451–485 | DOI | MR | Zbl