Investigation of the Structure of Waves Generated by
Russian journal of nonlinear dynamics, Tome 18 (2022) no. 3, pp. 367-378.

Voir la notice de l'article provenant de la source Math-Net.Ru

The wave capillary flow of the surface of an inviscid capillary jet, initiated by a single $\delta$-perturbation of its surface, is studied. It is shown that the wave pattern has a complex structure. The perturbation generates both fast traveling damped waves and a structure of nonpropagating exponentially growing waves. The structure of self-similar traveling waves is investigated. It is shown that there are three independent families of such self-similar solutions. The characteristics of the structure of nonpropagating exponentially growing waves are calculated. The characteristic time of formation of such a structure is determined.
Keywords: instability, capillary flow
Mots-clés : nonviscous jet.
@article{ND_2022_18_3_a3,
     author = {A. A. Safronov},
     title = {Investigation of the {Structure} of {Waves} {Generated} by},
     journal = {Russian journal of nonlinear dynamics},
     pages = {367--378},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2022_18_3_a3/}
}
TY  - JOUR
AU  - A. A. Safronov
TI  - Investigation of the Structure of Waves Generated by
JO  - Russian journal of nonlinear dynamics
PY  - 2022
SP  - 367
EP  - 378
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2022_18_3_a3/
LA  - en
ID  - ND_2022_18_3_a3
ER  - 
%0 Journal Article
%A A. A. Safronov
%T Investigation of the Structure of Waves Generated by
%J Russian journal of nonlinear dynamics
%D 2022
%P 367-378
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2022_18_3_a3/
%G en
%F ND_2022_18_3_a3
A. A. Safronov. Investigation of the Structure of Waves Generated by. Russian journal of nonlinear dynamics, Tome 18 (2022) no. 3, pp. 367-378. http://geodesic.mathdoc.fr/item/ND_2022_18_3_a3/

[1] Radev, S., Nachev, K., Onofri, F., Tadrist, L., and Liolios, A., “Numerical Analysis of the Sinuous Instability of a Viscous Capillary Jet Flowing Down an Immiscible Nonviscous Fluid”, Numerical Methods and Applications (NMA'2006), Lect. Notes Comput. Sci., 4310, eds. T. Boyanov, S. Dimova, K. Georgiev, G. Nikolov, Springer, Berlin, 2007, 677–684 | DOI | Zbl

[2] Kuzenov, V. V. and Ryzhkov, S. V., “Mathematical Modeling of Plasma Dynamics for Processes in Capillary Discharges”, Russian J. Nonlinear Dyn., 15:4 (2019), 543–550 | MR | Zbl

[3] Safronov, A. A., Koroteev, A. A., Filatov, N. I., and Safronova, N. A., “Capillary Hydraulic Jump in a Viscous Jet”, Russian J. Nonlinear Dyn., 15:3 (2019), 221–231 | MR | Zbl

[4] Inzh.-Fiz. Zh., 90:1 (2017), 176–185 (Russian) | DOI

[5] Grigoriev, A. L., Koroteev, A. A., Safronov, A. A., and Filatov, N. I., “Self-Similar Patterns of Subsatellites Formation at the Capillary Breakup of Viscous Jets”, Thermophys. Aeromech., 25:4 (2018), 575–585 | DOI

[6] Bondareva, N. V., Grigoriev, A. L., Korovin, T. G., Koroteev, A. A., Safronov, A. A., Skorobogatko, T. D., Filatov, N. I., and Khlynov, A. V., “Experimental Study of the Ohnesorge Number Effect on the Size of Droplets Formed As a Result of the Jet Capillary Breakup”, Thermophys. Aeromech., 26:5 (2019), 723–727 | DOI

[7] Eggers, J. and Dupont, T. F., “Drop Formation in a One-Dimensional Approximation of the Navier – Stokes Equation”, J. Fluid Mech., 262 (1994), 205–221 | DOI | MR | Zbl

[8] Strutt, J. W. (3rd Baron Rayleigh), “On the Instability of Jets”, Proc. Lond. Math. Soc., s1-10:1 (1878), 4–13 | MR

[9] Keller, J. B., Rubinow, S. I., and Tu, Y. O., “Spatial Instability of a Jet”, Phys. Fluids, 16:12 (1973), 2052–2055 | DOI

[10] Umemura, A., Osaka, J., Shinjo, J., Nakamura, Y., Matsumoto, S., Kikuchi, M., Taguchi, T., Ohkuma, H., Dohkojima, T., Shimaoka, T., Sone, T., Nakagami, H., and Ono, W., “Coherent Capillary Wave Structure Revealed by ISS Experiments for Spontaneous Nozzle Jet Disintegration”, Microgravity Sci. Technol., 32:3 (2020), 369–397 | DOI

[11] Umemura, A., “Self-Destabilizing Mechanism of a Laminar Inviscid Liquid Jet Issuing from a Circular Nozzle”, Phys. Rev. E, 83:4 (2011), 046307, 19 pp. | DOI

[12] Umemura, A., “Self-Destabilising Loop of a Low-Speed Water Jet Emanating from an Orifice in Microgravity”, J. Fluid Mech., 797 (2016), 146–180 | DOI | MR | Zbl

[13] Umemura, A. and Osaka, J., “Self-Destabilizing Loop Observed in a Jetting-to-Dripping Transition”, J. Fluid Mech., 752 (2014), 184–218 | DOI

[14] Safronov, A. A., Koroteev, A. A., Filatov, N. I., and Bondareva, N. V., “Fast Waves Development Initiated by Oscillations of a Recoiling Liquid Filament in a Viscous Fluid Jet”, Thermophys. Aeromech., 28:2 (2021), 237–245 | DOI

[15] Duchemin, L., Le Dizès, S., Vincent, L., and Villermaux, E., “Self-Similar Impulsive Capillary Waves on a Ligament”, Phys. Fluids, 27:5 (2015), 051704, 7 pp. | DOI

[16] Witham, G. B., Linear and Nonlinear Waves, Wiley, New York, 1999, 660 pp. | MR

[17] Nonlinear Waves, eds. S. Leibovich, A. R. Seebass, Cornell Univ. Press, Ithaca, N.Y., 1974, 331 pp.

[18] Culick, F. E. C., “Comments on a Ruptured Soap Film”, J. Appl. Phys., 31:6 (1960), 1128–1129 | DOI

[19] Landau, L. D. and Lifshitz, E. M., Course of Theoretical Physics, v. 6, Fluid Mechanics, 2nd ed., Butterworth/Heinemann, Oxford, 2003, 552 pp. | MR