On the Motion of the Chaplygin Sleigh Along
Russian journal of nonlinear dynamics, Tome 18 (2022) no. 2, pp. 243-251.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper addresses the problem of the motion of the Chaplygin sleigh, a rigid body moving with three points in contact with a horizontal plane. One of them is equipped with a knife edge along which there is no slipping. Special attention is given to the case where dry friction is present at one of the points of support without the knife edge. The equations of motion of the body are written, the normal reactions are calculated, and the behavior of the phase curves in the neighborhood of an equilibrium point, depending on the geometric and mass characteristics of the body, is investigated by the method of introducing a small parameter.
Keywords: dry friction, Chaplygin sleigh.
@article{ND_2022_18_2_a6,
     author = {A. Y. Shamin},
     title = {On the {Motion} of the {Chaplygin} {Sleigh} {Along}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {243--251},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2022_18_2_a6/}
}
TY  - JOUR
AU  - A. Y. Shamin
TI  - On the Motion of the Chaplygin Sleigh Along
JO  - Russian journal of nonlinear dynamics
PY  - 2022
SP  - 243
EP  - 251
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2022_18_2_a6/
LA  - en
ID  - ND_2022_18_2_a6
ER  - 
%0 Journal Article
%A A. Y. Shamin
%T On the Motion of the Chaplygin Sleigh Along
%J Russian journal of nonlinear dynamics
%D 2022
%P 243-251
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2022_18_2_a6/
%G en
%F ND_2022_18_2_a6
A. Y. Shamin. On the Motion of the Chaplygin Sleigh Along. Russian journal of nonlinear dynamics, Tome 18 (2022) no. 2, pp. 243-251. http://geodesic.mathdoc.fr/item/ND_2022_18_2_a6/

[1] Mat. Sb., 28:2 (1912), 303–314 (Russian) | DOI | MR | Zbl

[2] Neimark, Ju. I. and Fufaev, N. A., Dynamics of Nonholonomic Systems, Trans. Math. Monogr., 33, AMS, Providence, R.I., 1972, 518 pp. | MR | Zbl

[3] Field, P., “On the Motion of a Disc with Three Supports on a Rough Plane”, Phys. Rev. (Ser. 1), 35 (1912), 177–184 | Zbl

[4] Contensou, P., “Couplage entre frottement de pivotement et frottement de pivotement dans la théorie de latoupie”, Kreiselprobleme Gyrodynamics: IUTAM Symp. Celerina, Springer, Berlin, 1963, 201–216 | DOI

[5] Prikl. Mat. Mekh., 62:5 (1998), 762–767 (Russian) | DOI | MR

[6] Izv. Akad. Nauk. Mekh. Tverd. Tela, 2003, no. 4, 81–88 (Russian)

[7] Prikl. Mat. Mekh., 73:2 (2009), 189–203 (Russian) | DOI | MR | Zbl

[8] Ivanov, A. P., Fundamentals of the Theory of Systems with Friction, R Dynamics, Institute of Computer Science, Izhevsk, 2011, 304 pp. (Russian)

[9] Dokl. Akad. Nauk, 435:4 (2010), 475–478 (Russian) | DOI | MR | Zbl

[10] Prikl. Mat. Mekh., 75:2 (2011), 254–258 (Russian) | DOI | MR | Zbl

[11] Shegelski, M. R. A., Goodvin, G. L., Booth, R., Bagnall, P., and Reid, M., “Exact Normal Forces and Trajectories for a Rotating Tripod Sliding on a Smooth Surface”, Can. J. Phys., 82:875–890 (2004)

[12] Borisov, A. V., Mamaev, I. S., and Erdakova, N. N., “Dynamics of a Body Sliding on a Rough Plane and Supported at Three Points”, Theor. Appl. Mech., 43:2 (2016), 169–190 | DOI | Zbl

[13] Leine, R. I. and Nijmeijer, H., Dynamics and Bifurcations of Non-Smooth Mechanical Systems, Lect. Notes Appl. Comput. Mech., 18, Springer, Berlin, 2004, xii+236 pp. | DOI | MR | Zbl

[14] Brogliato, B., Nonsmooth Mechanics: Models, Dynamics and Control, 2nd ed., Springer, London, 1999, XX, 552 pp. | MR | Zbl

[15] Moreau, J. J., “Unilateral Contact and Dry Friction in Finite Freedom Dynamics”, Nonsmooth Mechanics and Applications, CISM International Centre for Mechanical Sciences. Courses and Lectures, 302, eds. mbox{J.-J.} Moreau, P. D. Panagiotopoulos, Springer, Vienna, 1988, 1–82, vi+462 pp. | MR

[16] Prikl. Mat. Mekh., 83:2 (2019), 228–233 (Russian) | DOI | Zbl

[17] Vestn. Mosk. Univ. Ser. 1. Mat. Mekh., 2020, no. 1, 48–55 (Russian) | DOI | Zbl

[18] Shamin, A. Yu., “On the Motion of the Chaplygin Sleigh on a Horizontal Plane with Dry Friction at Three Points of Contact”, Russian J. Nonlinear Dyn., 15:2 (2019), 159–169 | MR | Zbl

[19] Karapetyan, A. V. and Shamin, A. Yu., “On the Movement of the Chaplygin Sleigh on a Horizontal Plane with Dry Friction”, Acta Astronaut., 176 (2020), 733–740 | DOI | MR