A Study of Different Wave Structures of the
Russian journal of nonlinear dynamics, Tome 18 (2022) no. 2, pp. 231-241
Voir la notice de l'article provenant de la source Math-Net.Ru
In the present paper, the authors are interested in studying a famous nonlinear PDE re-
ferred to as the $(2 + 1)$-dimensional chiral Schrödinger (2D-CS) equation with applications in
mathematical physics. In this respect, the real and imaginary portions of the 2D-CS equation
are firstly derived through a traveling wave transformation. Different wave structures of the
2D-CS equation, classified as bright and dark solitons, are then retrieved using the modified
Kudryashov (MK) method and the symbolic computation package. In the end, the dynamics of
soliton solutions is investigated formally by representing a series of 3D-plots.
Keywords:
traveling wave transformation,
modified Kudryashov method, different wave structures.
Mots-clés : $(2 + 1)$-dimensional chiral Schrödinger equation
Mots-clés : $(2 + 1)$-dimensional chiral Schrödinger equation
@article{ND_2022_18_2_a5,
author = {K. Hosseini and M. Mirzazadeh and K. Dehingia and A. Das and S. Salahshour},
title = {A {Study} of {Different} {Wave} {Structures} of the},
journal = {Russian journal of nonlinear dynamics},
pages = {231--241},
publisher = {mathdoc},
volume = {18},
number = {2},
year = {2022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ND_2022_18_2_a5/}
}
TY - JOUR AU - K. Hosseini AU - M. Mirzazadeh AU - K. Dehingia AU - A. Das AU - S. Salahshour TI - A Study of Different Wave Structures of the JO - Russian journal of nonlinear dynamics PY - 2022 SP - 231 EP - 241 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2022_18_2_a5/ LA - en ID - ND_2022_18_2_a5 ER -
K. Hosseini; M. Mirzazadeh; K. Dehingia; A. Das; S. Salahshour. A Study of Different Wave Structures of the. Russian journal of nonlinear dynamics, Tome 18 (2022) no. 2, pp. 231-241. http://geodesic.mathdoc.fr/item/ND_2022_18_2_a5/