A Study of Different Wave Structures of the
Russian journal of nonlinear dynamics, Tome 18 (2022) no. 2, pp. 231-241.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, the authors are interested in studying a famous nonlinear PDE re- ferred to as the $(2 + 1)$-dimensional chiral Schrödinger (2D-CS) equation with applications in mathematical physics. In this respect, the real and imaginary portions of the 2D-CS equation are firstly derived through a traveling wave transformation. Different wave structures of the 2D-CS equation, classified as bright and dark solitons, are then retrieved using the modified Kudryashov (MK) method and the symbolic computation package. In the end, the dynamics of soliton solutions is investigated formally by representing a series of 3D-plots.
Keywords: traveling wave transformation, modified Kudryashov method, different wave structures.
Mots-clés : $(2 + 1)$-dimensional chiral Schrödinger equation
@article{ND_2022_18_2_a5,
     author = {K. Hosseini and M. Mirzazadeh and K. Dehingia and A. Das and S. Salahshour},
     title = {A {Study} of {Different} {Wave} {Structures} of the},
     journal = {Russian journal of nonlinear dynamics},
     pages = {231--241},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2022_18_2_a5/}
}
TY  - JOUR
AU  - K. Hosseini
AU  - M. Mirzazadeh
AU  - K. Dehingia
AU  - A. Das
AU  - S. Salahshour
TI  - A Study of Different Wave Structures of the
JO  - Russian journal of nonlinear dynamics
PY  - 2022
SP  - 231
EP  - 241
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2022_18_2_a5/
LA  - en
ID  - ND_2022_18_2_a5
ER  - 
%0 Journal Article
%A K. Hosseini
%A M. Mirzazadeh
%A K. Dehingia
%A A. Das
%A S. Salahshour
%T A Study of Different Wave Structures of the
%J Russian journal of nonlinear dynamics
%D 2022
%P 231-241
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2022_18_2_a5/
%G en
%F ND_2022_18_2_a5
K. Hosseini; M. Mirzazadeh; K. Dehingia; A. Das; S. Salahshour. A Study of Different Wave Structures of the. Russian journal of nonlinear dynamics, Tome 18 (2022) no. 2, pp. 231-241. http://geodesic.mathdoc.fr/item/ND_2022_18_2_a5/

[1] Biswas, A., “Chiral Solitons in $1+2$ Dimensions”, Internat. J. Theoret. Phys., 48:12 (2009), 3403–3409 | DOI | MR | Zbl

[2] Eslami, M., “Trial Solution Technique to Chiral Nonlinear Schrödinger's Equation in $(1+2)$-Dimensions”, Nonlinear Dynam., 85:2 (2016), 813–816 | DOI | MR

[3] Raza, N. and Javid, A., “Optical Dark and Dark-Singular Soliton Solutions of $(1+2)$-Dimensional Chiral Nonlinear Schrödinger's Equation”, Waves Random Complex Media, 29:3 (2019), 496–508 | DOI | MR | Zbl

[4] Raza, N. and Arshed, S., “Chiral Bright and Dark Soliton Solutions of Schrödinger's Equation in $(1+2)$-Dimensions”, Ain Shams Eng. J., 11:4 (2020), 1237–1241 | DOI | MR

[5] Hosseini, K. and Mirzazadeh, M., “Soliton and Other Solutions to the $(1+2)$-Dimensional Chiral Nonlinear Schrödinger Equation”, Commun. Theor. Phys. (Beijing), 72:12 (2020), 125008, 6 pp. | DOI | MR

[6] Osman, M. S., Baleanu, D., Tariq, K. U. H., Kaplan, M., Younis, M., and Rizvi, S. T. R., “Different Types of Progressive Wave Solutions via the 2D-Chiral Nonlinear Schrödinger Equation”, Front. Phys., 8 (2020), 215, 7 pp. | DOI

[7] Rezazadeh, H., Younis, M., Shafqat-Ur-Rehman, Eslami, M., Bilal, M., and Younas, U., “New Exact Traveling Wave Solutions to the $(2+1)$-Dimensional Chiral Nonlinear Schrödinger Equation”, Math. Model. Nat. Phenom., 16 (2021), 38, 15 pp. | DOI | MR | Zbl

[8] Nishino, A., Umeno, Y., and Wadati, M., “Chiral Nonlinear Schrödinger Equation: The Impact of Nonlinear Dynamics and Fractals on Quantum Physics and Relativity”, Chaos Solitons Fractals, 9:7 (1998), 1063–1069 | DOI | MR | Zbl

[9] Aglietti, U., Griguolo, L., Jackiw, R., Pi, S.-Y., and Seminara, D., “Anyons and Chiral Solitons on a Line”, Phys. Rev. Lett., 77:21 (1996), 4406–4409 | DOI

[10] Sulaiman, T. A., Yusuf, A., Abdel-Khalek, S., Bayram, M., and Ahmad, H., “Nonautonomous Complex Wave Solutions to the $(2+1)$-Dimensional Variable-Coefficients Nonlinear Chiral Schrödinger Equation”, Results Phys., 19 (2020), 103604, 7 pp. | DOI

[11] Hosseini, K., Sadri, K., Mirzazadeh, M., Chu, Y. M., Ahmadian, A., Pansera, B. A., and Salahshour, S., “A High-Order Nonlinear Schrödinger Equation with the Weak Non-Local Nonlinearity and Its Optical Solitons”, Results Phys., 23 (2021), 104035, 6 pp. | DOI | MR

[12] Hosseini, K., Sadri, K., Mirzazadeh, M., and Salahshour, S., “An Integrable $(2+1)$-Dimensional Nonlinear Schrödinger System and Its Optical Soliton Solutions”, Optik, 229 (2021), 166247 | DOI | MR

[13] Hosseini, K., Mirzazadeh, M., Baleanu, D., Raza, N., Park, C., Ahmadian, A., and Salahshour, S., “The Generalized Complex Ginzburg – Landau Model and Its Dark and Bright Soliton Solutions”, Eur. Phys. J. Plus, 136:7 (2021), 709 | DOI | MR

[14] Baleanu, D., Hosseini, K., Salahshour, S., Sadri, K., Mirzazadeh, M., Park, C., and Ahmadian, A., “The $(2+1)$-Dimensional Hyperbolic Nonlinear Schrödinger Equation and Its Optical Solitons”, AIMS Math., 6:9 (2021), 9568–9581 | DOI | MR | Zbl

[15] Ma, H.-C., Zhang, Zh.-P., and Deng, A.-P., “A New Periodic Solution to Jacobi Elliptic Functions of MKdV Equation and BBM Equation”, Acta Math. Appl. Sin. Engl. Ser., 28:2 (2012), 409–415 | DOI | MR | Zbl

[16] Kudryashov, N. A., “Method for Finding Highly Dispersive Optical Solitons of Nonlinear Differential Equation”, Optik, 206 (2020), 163550 | DOI | MR

[17] Kudryashov, N. A., “Highly Dispersive Solitary Wave Solutions of Perturbed Nonlinear Schrödinger Equations”, Appl. Math. Comput., 371 (2020), 124972, 11 pp. | MR | Zbl

[18] Kudryashov, N. A., “Highly Dispersive Optical Solitons of the Generalized Nonlinear Eighth-Order Schrödinger Equation”, Optik, 206 (2020), 164335 | DOI

[19] Kudryashov, N. A. and Antonova, E. V., “Solitary Waves of Equation for Propagation Pulse with Power Nonlinearities”, Optik, 217 (2020), 164881 | DOI | MR

[20] Biswas, A., “Quasi-Monochromatic Dynamics of Optical Solitons Having Quadratic-Cubic Nonlinearity”, Phys. Lett. A, 384:21 (2020), 126528, 5 pp. | DOI | MR | Zbl

[21] Biswas, A., “Optical Soliton Cooling with Polynomial Law of Nonlinear Refractive Index”, J. Opt., 49:4 (2020), 580–583 | DOI

[22] Zayed, E. M. E., Alngar, M. E. M., Biswas, A., Kara, A. H., Moraru, L., Ekici, M., Alzahrani, A. K., and Belic, M. R., “Solitons and Conservation Laws in Magneto-Optic Waveguides with Triple-Power Law Nonlinearity”, J. Opt., 49:4 (2020), 584–590 | DOI | MR

[23] Srivastava, H. M., Baleanu, D., Machado, J. A. T., Osman, M. S., Rezazadeh, H., Arshed, S., and Günerhan, H., “Traveling Wave Solutions to Nonlinear Directional Couplers by Modified Kudryashov Method”, Phys. Scr., 95:7 (2020), 075217 | DOI

[24] Rezazadeh, H., “New Solitons Solutions of the Complex Ginzburg – Landau Equation with Kerr Law Nonlinearity”, Optik, 167 (2018), 218–227 | DOI

[25] Savescu, M., Zhou, Q., Moraru, L., Biswas, A., Moshokoa, S. P., and Belic, M., “Singular Optical Solitons in Birefringent Nano-Fibers”, Optik, 127 (2016), 8995–9000 | DOI

[26] Javid, A. and Raza, N., “Chiral Solitons of the $(1+2)$-Dimensional Nonlinear Schrödinger's Equation”, Modern Phys. Lett. B, 33:32 (2019), 1950401, 12 pp. | DOI | MR

[27] Javid, A., Raza, N., Zhou, Q., and Abdullah, M., “New Exact Spatial and Periodic-Singular Soliton Solutions in Nematic Liquid Crystal”, Opt. Quant. Electron., 51:5 (2019), 147, 20 pp. | DOI | MR

[28] Javid, A., Raza, N., and Osman, M. S., “Multi-Solitons of Thermophoretic Motion Equation Depicting the Wrinkle Propagation in Substrate-Supported Graphene Sheets”, Commun. Theor. Phys. (Beijing), 71:4 (2019), 362–366 | DOI | MR

[29] Afzal, U., Raza, N., and Murtaza, I. G., “On Soliton Solutions of Time Fractional Form of Sawada – Kotera Equation”, Nonlinear Dynam., 95:1 (2019), 391–405 | DOI | Zbl