Nonlocal Constants of Motions of Equations
Russian journal of nonlinear dynamics, Tome 18 (2022) no. 1, pp. 103-118.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe a method to generate nonlocal constants of motion for a special class of nonlinear ODEs. We employ the method of the generalized Sundman transformation to obtain certain new nonlocal first integrals of autonomous second-order ordinary differential equations belonging to the classification scheme developed by Painlevé and Gambier.
Keywords: Sundman transformation, symmetry, nonlocal first integrals, Jacobi equation.
Mots-clés : Painlevé –Gambier
@article{ND_2022_18_1_a5,
     author = {P. Guha and A. G. Choudhury and B. Khanra and P. G. L. Leach},
     title = {Nonlocal {Constants} of {Motions} of {Equations}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {103--118},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2022_18_1_a5/}
}
TY  - JOUR
AU  - P. Guha
AU  - A. G. Choudhury
AU  - B. Khanra
AU  - P. G. L. Leach
TI  - Nonlocal Constants of Motions of Equations
JO  - Russian journal of nonlinear dynamics
PY  - 2022
SP  - 103
EP  - 118
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2022_18_1_a5/
LA  - en
ID  - ND_2022_18_1_a5
ER  - 
%0 Journal Article
%A P. Guha
%A A. G. Choudhury
%A B. Khanra
%A P. G. L. Leach
%T Nonlocal Constants of Motions of Equations
%J Russian journal of nonlinear dynamics
%D 2022
%P 103-118
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2022_18_1_a5/
%G en
%F ND_2022_18_1_a5
P. Guha; A. G. Choudhury; B. Khanra; P. G. L. Leach. Nonlocal Constants of Motions of Equations. Russian journal of nonlinear dynamics, Tome 18 (2022) no. 1, pp. 103-118. http://geodesic.mathdoc.fr/item/ND_2022_18_1_a5/

[1] Andrea, S., Restuccia, A., and Sotomayor, A., “The Gardner Category and Nonlocal Conservation Laws for $N = 1$ Super KdV”, J. Math. Phys., 46:10 (2005), 103517, 11 pp. | DOI | MR | Zbl

[2] Berkovich, L. M. and Orlova, I. S., “The Exact Linearization of Some Classes of Ordinary Differential Equations for Order $n > 2$”, Proc. Inst. Math. NASU, 30, 1 (2000), 90–98 | MR | Zbl

[3] Bocharov, A. V., Sokolov, V. V., and Svinolupov, S. I., On Some Equivalence Problems for Differential Equations, Preprint No. 54, ESI, Vienna, 1993, 12 pp. | MR

[4] Sovrem. Mat. Fundam. Napravl., 15 (2006), 59–75 (Russian) | DOI | MR

[5] Chandrasekar, V. K., Senthilvelan, M., and Lakshmanan, M., “A Unification in the Theory of Linearization of Second-Order Nonlinear Ordinary Differential Equations”, J. Phys. A, 39:3 (2006), L69–L76 | DOI | MR | Zbl

[6] Chandrasekar, V. K., Senthilvelan, M., and Lakshmanan, M., “On the Complete Integrability and Linearization of Nonlinear Ordinary Differential Equations: 2. Third-Order Equations”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 462:2070 (2006), 1831–1852 | MR | Zbl

[7] Crumey, A. D. W. B., “Local and Nonlocal Conserved Quantities for Generalized Nonlinear Schrödinger Equations”, Comm. Math. Phys., 108:4 (1987), 631–646 | DOI | MR | Zbl

[8] Duarte, L. G. S., Moreira, I. C., and Santos, F. C., “Linearization under Non-Point Transformations”, J. Phys. A, 27:19 (1994), L739–L743 | DOI | MR | Zbl

[9] Euler, N. and Euler, M., “Sundman Symmetries of Nonlinear Second-Order and Third-Order Ordinary Differential Equations”, J. Nonlinear Math. Phys., 11:3 (2004), 399–421 | DOI | MR | Zbl

[10] Euler, M. and Euler, N., Strömberg, A., and Åström, E., “Transformation between a Generalized Emden – Fowler Equation and the First Painlevé Transcendent”, Math. Methods Appl. Sci., 30:16 (2007), 2121–2124 | DOI | MR | Zbl

[11] Euler, N., Wolf, T., Leach, P. G. L., and Euler, M., “Linearisable Third-Order Ordinary Differential Equations and Generalised Sundman Transformations: The Case $X'''=0$”, Acta Appl. Math., 76:1 (2003), 89–115 | DOI | MR | Zbl

[12] Gorni, G. and Zampieri, G., “Nonlocal Variational Constants of Motion in Dissipative Dynamics”, Differ. Integral Equ., 30:7–8 (2017), 631–640 | MR | Zbl

[13] Gorni, G. and Zampieri, G., “Nonlocal and Nonvariational Extensions of Killing-Type Equations”, Discrete Contin. Dyn. Syst. Ser. S, 11:4 (2018), 675–689 | MR | Zbl

[14] Gorni, G. and Zampieri, G., “Lagrangian Dynamics by Nonlocal Constants of Motion”, Discrete Contin. Dyn. Syst. Ser. S, 13:10 (2020), 2751–2759 | MR | Zbl

[15] Govinder, K. S. and Leach, P. G. L., “Noetherian Integrals via Nonlocal Transformation”, Phys. Lett. A, 201:2–3 (1995), 91–94 | DOI | MR | Zbl

[16] Gromak, V. I. and Lukashevich, N. A., Analytic Properties of Solutions of Painlevé Equations, Universitetskoe, Minsk, 1990, 160 pp. (Russian) | MR

[17] Guha, P., Khanra, B., and Choudhury, A. G., “On Generalized Sundman Transformation Method, First Integrals, Symmetries and Solutions of Equations of Painlevé – Gambier Type”, Nonlinear Anal., 72:7–8 (2010), 3247–3257 | DOI | MR | Zbl

[18] Guha, P. and Choudhury, A. G., “Nonlocal Transformations of the Generalized Liénard Type Equations and Dissipative Ermakov – Milne – Pinney Systems”, Int. J. Geom. Methods Mod. Phys., 16:7 (2019), 1950107, 18 pp. | DOI | MR | Zbl

[19] Ibragimov, N. H. and Meleshko, S. V., “Linearization of Third-Order Ordinary Differential Equations by Point and Contact Transformations”, J. Math. Anal. Appl., 308:1 (2005), 266–289 | DOI | MR | Zbl

[20] Ince, E. L., Ordinary Differential Equations, Dover, New York, 1956, 576 pp. | MR

[21] Jacobi, C. G. J., “Theoria novi multiplicatoris systemati aequationum differentialium vulgarium applicandi”, J. Reine Angew. Math., 29 (1845), 213–279, 333–376 | MR | Zbl

[22] Lie, S., “Klassifikation und Integration von gewöhnlichen Differentialgleichungen zwischen $x, y$, die eine Gruppe von Transformationen gestatten: 3”, Arch. Math. og Naturvid., 8 (1883), 371–458; Lie, S., Gesammelte Abhanlundgen, v. 5, Teubner, Leipzig, 1924

[23] Meleshko, S. V., Moyo, S., Muriel, C., Romero, J. L., Guha, P., and Choudhury, A. G., “On First Integrals of Second-Order Ordinary Differential Equations”, J. Engrg. Math., 82 (2013), 17–30 | DOI | MR | Zbl

[24] Muriel, C. and Romero, J. L., “Second-Order Ordinary Differential Equations and First Integrals of the form $A(t,x)\dot x + B(t,x)$”, J. Nonlinear Math. Phys., 16, Suppl. 1 (2009), 209–222 | DOI | MR | Zbl

[25] Nucci, M. C. and Tamizhmani, K. M., “Using an Old Method of Jacobi to Derive Lagrangians: A Nonlinear Dynamical System with Variable Coefficients”, Nuovo Cimento Soc. Ital. Fis. B, 125:3 (2010), 255–269 | MR

[26] Scomparin, M., “Nonlocal Constants of Motionand First Integrals in Higher-Order Lagrangian Dynamics”, Rend. Istit. Mat. Univ. Trieste, 53 (2021), 2, 17 pp. | MR

[27] Sinelshchikov, D. I., “On Linearizability via Nonlocal Transformations and First Integrals for Second-Order Ordinary Differential Equations”, Chaos Solitons Fractals, 141 (2020), 110318, 7 pp. | DOI | MR | Zbl

[28] Sookmee, S. and Meleshko, S. V., “Conditions for Linearization of a Projectable System of Two Second-Order Ordinary Differential Equations”, J. Phys. A, 41:40 (2008), 402001, 7 pp. | DOI | MR | Zbl

[29] Sundman, K. F., “Mémoire sur le problème des trois corps”, Acta Math., 36:1 (1913), 105–179 | DOI | MR

[30] Szebehely, V. and Bond, V., “Transformations of the Perturbed Two-Body Problem to Unperturbed Harmonic Oscillators”, Celestial Mech., 30:1 (1983), 59–69 | DOI | MR | Zbl

[31] Tresse, A. M., Détermination des invariants ponctuels de l'équation différentielle ordinaire du seconde ordre $y^{\prime\prime} = w(x,y,y^\prime)$, Hirzel, Leipzig, 1896, 87 pp.