Analysis of the Vibrational Behavior of a Bolted Beam
Russian journal of nonlinear dynamics, Tome 18 (2022) no. 1, pp. 3-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper presents the effect of friction-induced vibration between two beams in relative motion according to Timoshenko’s beam theory. This system is composed of two cantilever beams screwed together, allowing friction force to occur in the contact interface. The nonlinear behavior can be divided into two phases: stick and slip. The differential equations of motion in the two phases are developed, with the precision of the transition condition between each phase. A number of experiments are carried out in order to validate the theoretical model, the main contribution of which is to test these specimens in modes greater than one. The experiments demonstrate the influence of changing the clamping force on the stiffness of the structure and thus on its frequency and damping ratio. The comparison between theory and experiments reveals a good agreement. In addition, the tests show an increase in the modal damping ratio when the frequencies are increased. This leads to a considerable increase in energy dissipation by the structure, making it a good choice as a friction damper.
Keywords: bolted beam, Timoshenko beam, damping, stick-slip phenomenon.
@article{ND_2022_18_1_a0,
     author = {F. Chekirou and K. Brahimi and H. Bournine and K. Hamouda and M. Haddad and T. Benkajouh and A. Le Bot},
     title = {Analysis of the {Vibrational} {Behavior} of a {Bolted} {Beam}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {3--18},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2022_18_1_a0/}
}
TY  - JOUR
AU  - F. Chekirou
AU  - K. Brahimi
AU  - H. Bournine
AU  - K. Hamouda
AU  - M. Haddad
AU  - T. Benkajouh
AU  - A. Le Bot
TI  - Analysis of the Vibrational Behavior of a Bolted Beam
JO  - Russian journal of nonlinear dynamics
PY  - 2022
SP  - 3
EP  - 18
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2022_18_1_a0/
LA  - en
ID  - ND_2022_18_1_a0
ER  - 
%0 Journal Article
%A F. Chekirou
%A K. Brahimi
%A H. Bournine
%A K. Hamouda
%A M. Haddad
%A T. Benkajouh
%A A. Le Bot
%T Analysis of the Vibrational Behavior of a Bolted Beam
%J Russian journal of nonlinear dynamics
%D 2022
%P 3-18
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2022_18_1_a0/
%G en
%F ND_2022_18_1_a0
F. Chekirou; K. Brahimi; H. Bournine; K. Hamouda; M. Haddad; T. Benkajouh; A. Le Bot. Analysis of the Vibrational Behavior of a Bolted Beam. Russian journal of nonlinear dynamics, Tome 18 (2022) no. 1, pp. 3-18. http://geodesic.mathdoc.fr/item/ND_2022_18_1_a0/

[1] Gagnon, L., Morandi, M., and Ghiringhelli, G. L., “A Review of Friction Damping Modeling and Testing”, Arch. Appl. Mech., 90 (2020), 107–126 | DOI

[2] Saaed, T. E., Nikolakopoulos, G., Jonasson, J.-E., and Hedlund, H., “A State-of-the-Art Review of Structural Control Systems”, J. Vib. Control, 21:5 (2015), 919–937 | DOI

[3] Zampieri, P., Curtarello, A., Maiorana, E., and Pellegrino, C., “A Review of the Fatigue Strength of Shear Bolted Connections”, Int. J. Steel Struct., 19 (2019), 1084–1098 | DOI

[4] Grzejda, R., “Modelling Nonlinear Preloaded Multi-Bolted Systems on the Operational State”, Eng. Trans., 64:4 (2016), 525–531

[5] Mahmoudi, M., Kosari, M., Lorestani, M., and Jalili Sadr Abad, M., “Effect of Contact Surface Type on the Slip Resistance in Bolted Connections”, J. Constr. Steel Res., 166 (2020), 105943 | DOI

[6] Gaul, L., Roseira, J., and Becker, J., “Structural Damping with Friction Beams”, Shock. Vib., 15:3–4 (2008), 291–298 | DOI

[7] Popp, K., Panning, L., and Sextro, W., “Vibration Damping by Friction Forces: Theory and Applications”, J. Vib. Control, 9:3–4 (2003), 419–448 | DOI | Zbl

[8] Bournine, H., Wagg, D. J., and Neild, S. A., “Vibration Damping in Bolted Friction Beam-Columns”, J. Sound Vibration, 330:8 (2011), 1655–1679 | DOI

[9] Sedighi, H. M., Shirazib, K. H., and Naderan-Tahanb, Kh., “Stick-Slip Analysis in Vibrating Two-Layer Beams with Frictional Interface”, Lat. Am. J. Solids Struct., 10 (2013), 1025–1042 | DOI

[10] Timoshenko, S. P., “On Transverse Vibrations of Bars of Uniform Cross-Section”, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science (6), 43:253 (1922), 125–131 | DOI

[11] Timoshenko, S., Vibration Problems in Engineering, Wolfenden, Singapore, 2007, 476 pp.

[12] Krysko, V. A., Awrejcewicz, J., Saltykova, O. A., Papkova, I. V., and Krysko, A. V., “On the Contact Interaction of a Two-Layer Beam Structure with Clearance Described by Kinematic Models of the First, Second and Third Order Approximation”, Mech. Syst. Signal Process., 115 (2019), 696–719 | DOI

[13] Saltykova, O. A. and Krysko, A. V., “The Contact Interaction of Two Timoshenko Beams”, Russian J. Nonlinear Dyn., 13:1 (2017), 41–53 (Russian) | MR

[14] Szmidt, T., Pisarski, D., Konowrocki, R., Awietjan, S., and Boczkowska, A., “Adaptive Damping of a Double-Beam Structure Based on Magnetorheological Elastomer”, Shock. Vib., 2019 (2019), 8526179, 16 pp.

[15] Dion, J.-L., Chevallier, G., and Peyret, N., “Improvement of Measurement Techniques for Damping Induced by Micro-Sliding”, Mech. Syst. Signal Process., 34:1–2 (2013), 106–115 | DOI

[16] Latour, M., D'Aniello, M., Zimbru, M., Rizzano, G., Piluso, V., and Landolfo, R., “Removable Friction Dampers for Low-Damage Steel Beam-to-Column Joints”, Soil Dyn. Earthq. Eng., 115 (2018), 66–81 | DOI

[17] Hsu, H.-L. and Halim, H., “Improving Seismic Performance of Framed Structures with Steel Curved Dampers”, Eng. Struct., 130 (2017), 99–111 | DOI

[18] Wagg, D. J. and Neild, S. A., Nonlinear Vibration with Control: For Flexible and Adaptive Structures, Solid Mech. Appl., 218, 2nd ed., Springer, Cham, 2015, 464 pp. | MR | Zbl

[19] Tan, G., Wang, W., Cheng, Y., Wei, H., Wei, Zh., and Liu, H., “Dynamic Response of a Nonuniform Timoshenko Beam with Elastic Supports, Subjected to a Moving Spring-Mass System”, Int. J. Struct. Stab. Dyn., 18:5 (2018), 1850066, 23 pp. | DOI | MR

[20] Huang, T. C., “The Effect of Rotatory Inertia and of Shear Deformation on the Frequency and Normal Mode Equations of Uniform Beams with Simple End Conditions”, J. Appl. Mech., 28:4 (1961), 579–584 | DOI | MR | Zbl