Criteria of Motion Without Slipping for
Russian journal of nonlinear dynamics, Tome 17 (2021) no. 4, pp. 527-546.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we present a study of the dynamics of a mobile robot with omnidirectional wheels taking into account the reaction forces acting from the plane. The dynamical equations are obtained in the form of Newton –Euler equations. In the course of the study, we formulate structural restrictions on the position and orientation of the omnidirectional wheels and their rollers taking into account the possibility of implementing the omnidirectional motion. We obtain the dependence of reaction forces acting on the wheel from the supporting surface on the parameters defining the trajectory of motion: linear and angular velocities and accelerations, and the curvature of the trajectory of motion. A striking feature of the system considered is that the results obtained can be formulated in terms of elementary geometry.
Keywords: omnidirectional mobile robot, reaction force, nonholonomic model.
Mots-clés : simulation
@article{ND_2021_17_4_a11,
     author = {I. S. Mamaev and A. A. Kilin and Yu. L. Karavaev and V. A. Shestakov},
     title = {Criteria of {Motion} {Without} {Slipping} for},
     journal = {Russian journal of nonlinear dynamics},
     pages = {527--546},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2021_17_4_a11/}
}
TY  - JOUR
AU  - I. S. Mamaev
AU  - A. A. Kilin
AU  - Yu. L. Karavaev
AU  - V. A. Shestakov
TI  - Criteria of Motion Without Slipping for
JO  - Russian journal of nonlinear dynamics
PY  - 2021
SP  - 527
EP  - 546
VL  - 17
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2021_17_4_a11/
LA  - en
ID  - ND_2021_17_4_a11
ER  - 
%0 Journal Article
%A I. S. Mamaev
%A A. A. Kilin
%A Yu. L. Karavaev
%A V. A. Shestakov
%T Criteria of Motion Without Slipping for
%J Russian journal of nonlinear dynamics
%D 2021
%P 527-546
%V 17
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2021_17_4_a11/
%G en
%F ND_2021_17_4_a11
I. S. Mamaev; A. A. Kilin; Yu. L. Karavaev; V. A. Shestakov. Criteria of Motion Without Slipping for. Russian journal of nonlinear dynamics, Tome 17 (2021) no. 4, pp. 527-546. http://geodesic.mathdoc.fr/item/ND_2021_17_4_a11/

[1] Adascalitei, F. and Doroftei, I., “Practical Applications for Mobile Robots Based on Mecanum Wheels: A Systematic Survey”, Rev. Precis. Mech. Opt. Mechatron., 40 (2011), 21–29

[2] Kanjanawanishkul, K., “Omnidirectional Wheeled Mobile Robots: Wheel Types and Practical Applications”, Int. J. Adv. Mechatron. Syst., 6:6 (2015), 289–302 | DOI

[3] Peng, T., Qian, J., Zi, B., Liu, J., and Wang, X., “Mechanical Design and Control System of an Omni-Directional Mobile Robot for Material Conveying”, Proc. of the 9th Internat. Conf. on Digital Enterprise Technology (DET'2016): Intelligent Manufacturing in the Knowledge Economy Era (Nanjing, China, Mar 2017), 412–415 | Zbl

[4] Ilon, B., Wheels for a Course Stable Selfpropelling Vehicle Movable in Any Desired Direction on the Ground or Some Other Base, Patent US No. 3 876 255, 1972

[5] Grabowiecki, J., Vehicle Wheel, Patent US No. 1 303 535, 03 June 1919

[6] Blumrich, J., Omnidirectional Wheel, Patent US No. 3 789 947A, 1972

[7] Borisov, A. V., Kilin, A. A., and Mamaev, I. S., “Rolling of a Homogeneous Ball over a Dynamically Asymmetric Sphere”, Regul. Chaotic Dyn., 16:5 (2011), 465–483 | DOI | MR | Zbl

[8] Pinheiro, F., Maximo, M., and Yoneyama, T., “Model Predictive Control for Omnidirectional Small Size Robot with Motor and Non-Slipping Constraints”, 2019 Latin American Robotics Symposium (LARS), 2019 Brazilian Symposium on Robotics (SBR), and 2019 Workshop on Robotics in Education (WRE) (Rio Grande, Brazil, Sept 2019), 13–18

[9] Huang, Y., Cao, C., and Leng, C., Ind. Robot, 37:1 (2010), The Path-Tracking Controller Based on Dynamic Model with Slip for One Four-Wheeled OMR

[10] Balkcom, D. J., Kavathekar, P. A., and Mason, M. T., “Time-Optimal Trajectories for an Omni-Directional Vehicle”, Int. J. Robot. Res., 25:10 (2006), 985–999 | DOI | MR

[11] Qian, J., Zi, B., Wang, D., Ma, Y., and Zhang, D., “The Design and Development of an Omni-Directional Mobile Robot Oriented to an Intelligent Manufacturing System”, Sensors, 17:9 (2017), 2073, 15 pp. | DOI

[12] Borisov, A. V., Kilin, A. A., and Mamaev, I. S., “Dynamics and Control of an Omniwheel Vehicle”, Regul. Chaotic Dyn., 20:2 (2015), 153–172 | DOI | MR | Zbl

[13] Kilin, A. A. and Bobykin, A. D., “Control of a Vehicle with Omniwheels on a Plane”, Nelin. Dinam., 10:4 (2014), 473–481 (Russian) | DOI

[14] Chu, B., “Performance Evaluation of Mecanum Wheeled Omni-Directional Mobile Robot”, Proc. of the 31st Internat. Symp. on Automation and Robotics in Construction and Mining (ISARC'2014, Sydney, Australia, July 2014), 784–789 | Zbl

[15] Fundam. Prikl. Mat., 11:8 (2005), 29–80 (Russian) | DOI | MR | Zbl

[16] Shestakov, V. A., Mamaev, I. S., and Karavaev, Yu. L., “Controlled Motion of a Highly Maneuverable Mobile Robot along Curvilinear Trajectories”, 2020 Internat. Conf. “Nonlinearity, Information and Robotics (NIR)” (Innopolis, Russia, June 2020), 4 pp.

[17] Reza, M., Rastegarpanah, A., and Stolkin, R., “Motion Planning and Control of an Omnidirectional Mobile Robot in Dynamic Environments”, Robotics, 10:1,48 (2021), 27 pp.

[18] Kilin, A., Bozek, P., Karavaev, Yu., Klekovkin, A., and Shestakov, V., “Experimental Investigations of a Highly Maneuverable Mobile Omniwheel Robot”, Int. J. Adv. Robot. Syst., 14:6 (2017), 1–9 | DOI

[19] Andreev, A. and Peregudova, O., On the Trajectory Tracking Control of a Wheeled Mobile Robot Based on a Dynamic Model with Slip, 2020 15th Internat. Conf. on Stability and Oscillations of Nonlinear Control Systems (Pyatnitskiy's Conference, STAB), 1–4 | MR

[20] Williams, R., Carter, B., Gallina, P., and Rosati, G., “Wheeled Omni-Directional Robot Dynamics Including Slip”, ASME'2002 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (Louisiana, USA, Nov 2002), 1–7

[21] Wu, J., Williams, R. III, and Lew, J., “Velocity and Acceleration Cones for Kinematic and Dynamic Constraints on Omni-Directional Mobile Robots”, J. Dyn. Syst. Meas. Control., 128:4 (2006), 788–799 | DOI

[22] Adamov, B. I. and Saypulaev, G. R., “Research on the Dynamics of an Omnidirectional Platform Taking into Account Real Design of Mecanum Wheels (As Exemplified by KUKA youBot)”, Rus. J. Nonlin. Dyn., 16:2 (2020), 291–307 | MR | Zbl

[23] Gerasimov, K. V. and Zobova, A. A., “Dynamics of a Vehicle with Omniwheels with Massive Rollers with Account for a Roller Change Contacting with Supporting Plane”, Trudy MAI, 2018, no. 101, 1, 26 pp.

[24] Long, S., Terakawa, T., Komori, M., and Ougino, T., “Analysis of Traveling Strategies for Driving Omni-Wheeled Vehicle around a Corner”, IEEE Access, 8 (2020), 104 841–104 856

[25] Li, Y., Dai, S., Zhao, L., Yan, X., and Shi, Y., “Topological Design Methods for Mecanum Wheel Configurations of an Omnidirectional Mobile Robot”, Symmetry, 11:10 (2019), 1268, 27 pp. | DOI

[26] Izv. Ross. Akad. Nauk. Teor. Sist. Upr., 2007, no. 6, 142–149 (Russian) | DOI | MR | Zbl

[27] Abdelrahman, M., Zeidis, I., Bondarev, O., Adamov, B., Becker, F., and Zimmermann, K., “A Description of the Dynamics of a Four-Wheel Mecanum Mobile System As a Basis for a Platform Concept for Special Purpose Vehicles for Disabled Persons”, 58th Ilmenau Scientific Colloquium (Thüringen, Germany, Sept 2014), 2.2.8, 10 pp.

[28] Typiak, A., Łopatka, M., Rykała, L., and Kijek, M., “Dynamics of Omnidirectional Unmanned Rescue Vehicle with Mecanum Wheels”, AIP Conf. Proc., 1922:1 (2018), 120 005, 10 pp.

[29] Prikl. Mat. Mekh., 73:1 (2009), 13–22 (Russian) | DOI | MR | Zbl

[30] Oliveira, H. P., Sousa, A. J., Moreira, A. P., and Costa, P. J., “Dynamical Models for Omni-Directional Robots with 3 and 4 Wheels”, Proc. of the 5th Internat. Conf. on Informatics in Control, Automation and Robotics (ICINCO'2008), 189–196

[31] Markeev, A. P., Dynamics of a Body in Contact with a Solid Surface, R Dynamics, Institute of Computer Science, Izhevsk, 2014, 496 pp. (Russian) | MR

[32] O'Reilly, O. M., Intermediate Dynamics for Engineers: A Unified Treatment of Newton – Euler and Lagrangian Mechanics, Cambridge Univ. Press, Cambridge, 2008, xiv+392 pp. | MR

[33] Prikl. Mat. Mekh., 62:5 (1998), 762–767 (Russian) | DOI | MR

[34] Karavaev, Yu. L., Kilin, A. A., and Klekovkin, A. V., “The Dynamical Model of the Rolling Friction of Spherical Bodies on a Plane without Slipping”, Nelin. Dinam., 13:4 (2017), 599–609 (Russian) | DOI | MR

[35] Goryacheva, I. G. and Zobova, A. A., “Dynamics of Deformable Contacting Bodies with Sliding, Rolling, and Spinning”, Int. J. Mech. Sci., 216 (2022), 106981 | DOI