Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2021_17_4_a11, author = {I. S. Mamaev and A. A. Kilin and Yu. L. Karavaev and V. A. Shestakov}, title = {Criteria of {Motion} {Without} {Slipping} for}, journal = {Russian journal of nonlinear dynamics}, pages = {527--546}, publisher = {mathdoc}, volume = {17}, number = {4}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2021_17_4_a11/} }
TY - JOUR AU - I. S. Mamaev AU - A. A. Kilin AU - Yu. L. Karavaev AU - V. A. Shestakov TI - Criteria of Motion Without Slipping for JO - Russian journal of nonlinear dynamics PY - 2021 SP - 527 EP - 546 VL - 17 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2021_17_4_a11/ LA - en ID - ND_2021_17_4_a11 ER -
I. S. Mamaev; A. A. Kilin; Yu. L. Karavaev; V. A. Shestakov. Criteria of Motion Without Slipping for. Russian journal of nonlinear dynamics, Tome 17 (2021) no. 4, pp. 527-546. http://geodesic.mathdoc.fr/item/ND_2021_17_4_a11/
[1] Adascalitei, F. and Doroftei, I., “Practical Applications for Mobile Robots Based on Mecanum Wheels: A Systematic Survey”, Rev. Precis. Mech. Opt. Mechatron., 40 (2011), 21–29
[2] Kanjanawanishkul, K., “Omnidirectional Wheeled Mobile Robots: Wheel Types and Practical Applications”, Int. J. Adv. Mechatron. Syst., 6:6 (2015), 289–302 | DOI
[3] Peng, T., Qian, J., Zi, B., Liu, J., and Wang, X., “Mechanical Design and Control System of an Omni-Directional Mobile Robot for Material Conveying”, Proc. of the 9th Internat. Conf. on Digital Enterprise Technology (DET'2016): Intelligent Manufacturing in the Knowledge Economy Era (Nanjing, China, Mar 2017), 412–415 | Zbl
[4] Ilon, B., Wheels for a Course Stable Selfpropelling Vehicle Movable in Any Desired Direction on the Ground or Some Other Base, Patent US No. 3 876 255, 1972
[5] Grabowiecki, J., Vehicle Wheel, Patent US No. 1 303 535, 03 June 1919
[6] Blumrich, J., Omnidirectional Wheel, Patent US No. 3 789 947A, 1972
[7] Borisov, A. V., Kilin, A. A., and Mamaev, I. S., “Rolling of a Homogeneous Ball over a Dynamically Asymmetric Sphere”, Regul. Chaotic Dyn., 16:5 (2011), 465–483 | DOI | MR | Zbl
[8] Pinheiro, F., Maximo, M., and Yoneyama, T., “Model Predictive Control for Omnidirectional Small Size Robot with Motor and Non-Slipping Constraints”, 2019 Latin American Robotics Symposium (LARS), 2019 Brazilian Symposium on Robotics (SBR), and 2019 Workshop on Robotics in Education (WRE) (Rio Grande, Brazil, Sept 2019), 13–18
[9] Huang, Y., Cao, C., and Leng, C., Ind. Robot, 37:1 (2010), The Path-Tracking Controller Based on Dynamic Model with Slip for One Four-Wheeled OMR
[10] Balkcom, D. J., Kavathekar, P. A., and Mason, M. T., “Time-Optimal Trajectories for an Omni-Directional Vehicle”, Int. J. Robot. Res., 25:10 (2006), 985–999 | DOI | MR
[11] Qian, J., Zi, B., Wang, D., Ma, Y., and Zhang, D., “The Design and Development of an Omni-Directional Mobile Robot Oriented to an Intelligent Manufacturing System”, Sensors, 17:9 (2017), 2073, 15 pp. | DOI
[12] Borisov, A. V., Kilin, A. A., and Mamaev, I. S., “Dynamics and Control of an Omniwheel Vehicle”, Regul. Chaotic Dyn., 20:2 (2015), 153–172 | DOI | MR | Zbl
[13] Kilin, A. A. and Bobykin, A. D., “Control of a Vehicle with Omniwheels on a Plane”, Nelin. Dinam., 10:4 (2014), 473–481 (Russian) | DOI
[14] Chu, B., “Performance Evaluation of Mecanum Wheeled Omni-Directional Mobile Robot”, Proc. of the 31st Internat. Symp. on Automation and Robotics in Construction and Mining (ISARC'2014, Sydney, Australia, July 2014), 784–789 | Zbl
[15] Fundam. Prikl. Mat., 11:8 (2005), 29–80 (Russian) | DOI | MR | Zbl
[16] Shestakov, V. A., Mamaev, I. S., and Karavaev, Yu. L., “Controlled Motion of a Highly Maneuverable Mobile Robot along Curvilinear Trajectories”, 2020 Internat. Conf. “Nonlinearity, Information and Robotics (NIR)” (Innopolis, Russia, June 2020), 4 pp.
[17] Reza, M., Rastegarpanah, A., and Stolkin, R., “Motion Planning and Control of an Omnidirectional Mobile Robot in Dynamic Environments”, Robotics, 10:1,48 (2021), 27 pp.
[18] Kilin, A., Bozek, P., Karavaev, Yu., Klekovkin, A., and Shestakov, V., “Experimental Investigations of a Highly Maneuverable Mobile Omniwheel Robot”, Int. J. Adv. Robot. Syst., 14:6 (2017), 1–9 | DOI
[19] Andreev, A. and Peregudova, O., On the Trajectory Tracking Control of a Wheeled Mobile Robot Based on a Dynamic Model with Slip, 2020 15th Internat. Conf. on Stability and Oscillations of Nonlinear Control Systems (Pyatnitskiy's Conference, STAB), 1–4 | MR
[20] Williams, R., Carter, B., Gallina, P., and Rosati, G., “Wheeled Omni-Directional Robot Dynamics Including Slip”, ASME'2002 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (Louisiana, USA, Nov 2002), 1–7
[21] Wu, J., Williams, R. III, and Lew, J., “Velocity and Acceleration Cones for Kinematic and Dynamic Constraints on Omni-Directional Mobile Robots”, J. Dyn. Syst. Meas. Control., 128:4 (2006), 788–799 | DOI
[22] Adamov, B. I. and Saypulaev, G. R., “Research on the Dynamics of an Omnidirectional Platform Taking into Account Real Design of Mecanum Wheels (As Exemplified by KUKA youBot)”, Rus. J. Nonlin. Dyn., 16:2 (2020), 291–307 | MR | Zbl
[23] Gerasimov, K. V. and Zobova, A. A., “Dynamics of a Vehicle with Omniwheels with Massive Rollers with Account for a Roller Change Contacting with Supporting Plane”, Trudy MAI, 2018, no. 101, 1, 26 pp.
[24] Long, S., Terakawa, T., Komori, M., and Ougino, T., “Analysis of Traveling Strategies for Driving Omni-Wheeled Vehicle around a Corner”, IEEE Access, 8 (2020), 104 841–104 856
[25] Li, Y., Dai, S., Zhao, L., Yan, X., and Shi, Y., “Topological Design Methods for Mecanum Wheel Configurations of an Omnidirectional Mobile Robot”, Symmetry, 11:10 (2019), 1268, 27 pp. | DOI
[26] Izv. Ross. Akad. Nauk. Teor. Sist. Upr., 2007, no. 6, 142–149 (Russian) | DOI | MR | Zbl
[27] Abdelrahman, M., Zeidis, I., Bondarev, O., Adamov, B., Becker, F., and Zimmermann, K., “A Description of the Dynamics of a Four-Wheel Mecanum Mobile System As a Basis for a Platform Concept for Special Purpose Vehicles for Disabled Persons”, 58th Ilmenau Scientific Colloquium (Thüringen, Germany, Sept 2014), 2.2.8, 10 pp.
[28] Typiak, A., Łopatka, M., Rykała, L., and Kijek, M., “Dynamics of Omnidirectional Unmanned Rescue Vehicle with Mecanum Wheels”, AIP Conf. Proc., 1922:1 (2018), 120 005, 10 pp.
[29] Prikl. Mat. Mekh., 73:1 (2009), 13–22 (Russian) | DOI | MR | Zbl
[30] Oliveira, H. P., Sousa, A. J., Moreira, A. P., and Costa, P. J., “Dynamical Models for Omni-Directional Robots with 3 and 4 Wheels”, Proc. of the 5th Internat. Conf. on Informatics in Control, Automation and Robotics (ICINCO'2008), 189–196
[31] Markeev, A. P., Dynamics of a Body in Contact with a Solid Surface, R Dynamics, Institute of Computer Science, Izhevsk, 2014, 496 pp. (Russian) | MR
[32] O'Reilly, O. M., Intermediate Dynamics for Engineers: A Unified Treatment of Newton – Euler and Lagrangian Mechanics, Cambridge Univ. Press, Cambridge, 2008, xiv+392 pp. | MR
[33] Prikl. Mat. Mekh., 62:5 (1998), 762–767 (Russian) | DOI | MR
[34] Karavaev, Yu. L., Kilin, A. A., and Klekovkin, A. V., “The Dynamical Model of the Rolling Friction of Spherical Bodies on a Plane without Slipping”, Nelin. Dinam., 13:4 (2017), 599–609 (Russian) | DOI | MR
[35] Goryacheva, I. G. and Zobova, A. A., “Dynamics of Deformable Contacting Bodies with Sliding, Rolling, and Spinning”, Int. J. Mech. Sci., 216 (2022), 106981 | DOI