Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2021_17_3_a6, author = {V. Z. Grines and E. V. Zhuzhoma}, title = {Cantor {Type} {Basic} {Sets} of {Surface} $A$-endomorphisms}, journal = {Russian journal of nonlinear dynamics}, pages = {335--345}, publisher = {mathdoc}, volume = {17}, number = {3}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2021_17_3_a6/} }
V. Z. Grines; E. V. Zhuzhoma. Cantor Type Basic Sets of Surface $A$-endomorphisms. Russian journal of nonlinear dynamics, Tome 17 (2021) no. 3, pp. 335-345. http://geodesic.mathdoc.fr/item/ND_2021_17_3_a6/
[1] Tr. Mat. Inst. Steklova, 249 (2005), 3–239 (Russian)
[2] Grines, V. Z., “The Topological Equivalence of One-Dimensional Basic Sets of Diffeomorphisms on Two-Dimensional Manifolds”, Uspekhi Mat. Nauk, 29:6(180) (1974), 163–164 (Russian) | Zbl
[3] Grines, V. Z., “The Topological Conjugacy of Diffeomorphisms of a Two-Dimensional Manifold on One-Dimensional Orientable Basic Sets: 1”, Tr. Mosk. Mat. Obs., 32 (1975), 35–60 (Russian) | Zbl
[4] Grines, V. Z., “The Topological Conjugacy of Diffeomorphisms of a Two-Dimensional Manifold on One-Dimensional Orientable Basic Sets: 2”, Tr. Mosk. Mat. Obs., 34 (1977), 243–252 (Russian) | Zbl
[5] Mat. Sb., 188:4 (1997), 57–94 | DOI | DOI | Zbl
[6] Uspekhi Mat. Nauk, 34:4 (1979), 185–186 (Russian) | DOI | Zbl
[7] Dokl. Ross. Akad. Nauk, 374:6 (2000), 735–737 (Russian) | Zbl
[8] Mat. Sb., 212:5 (2021), 102–132 (Russian) | DOI | DOI | Zbl
[9] Grines, V. Z. and Kurenkov, E. D., “On Hyperbolic Attractors and Repellers of Endomorphisms”, Nelin. Dinam., 13:4 (2017), 557–571 (Russian) | DOI
[10] Kurenkov, E. D., “On Existence of an Endomorphism of $2$-Torus with Strictly Invariant Repeller”, Zh. SVMO, 19:1 (2017), 60–66 (Russian) | DOI | Zbl
[11] Mat. Sb. (N.S.), 94(136):2(6) (1974), 243–264 (Russian) | DOI
[12] Uspekhi Mat. Nauk, 39:6(240) (1984), 75–113 (Russian) | DOI | Zbl
[13] Grines, V. and Zhuzhoma, E., “On Structurally Stable Diffeomorphisms with Codimension One Expanding Attractors”, Trans. Amer. Math. Soc., 357:2 (2005), 617–667 | DOI | Zbl
[14] Grines, V. Z. and Zhuzhoma, E. V., Surface Laminations and Chaotic Dynamical Systems, R Dynamics, Institute of Computer Science, Izhevsk, 2021, 502 pp.
[15] Ikegami, G., “Hyperbolic Sets and Axiom A for Endomorphisms”, Proc. of Inst. of Natural Sciences, Nihon Univ., 26 (1991), 69–86
[16] Katok, A., “Bernoulli Diffeomorphisms on Surfaces”, Ann. of Math. (2), 110:3 (1979), 529–547 | DOI | Zbl
[17] Newhouse, S., “On Codimension One Anosov Diffeomorphisms”, Amer. J. Math., 92:3 (1970), 761–770 | DOI | Zbl
[18] Przytycki, F., “Anosov Endomorphisms”, Studia Math., 58:3 (1976), 249–285 | DOI | Zbl
[19] Przytycki, F., “On $\Omega$-Stability and Structural Stability of Endomorphisms Satisfying Axiom A”, Studia Math., 60:1 (1977), 61–77 | DOI | Zbl
[20] Shub, M., “Endomorphisms of Compact Differentiable Manifolds”, Amer. J. Math., 91:1 (1969), 175–199 | DOI | Zbl
[21] Smale, S., “Differentiable Dynamical Systems”, Bull. Amer. Math. Soc., 73:6 (1967), 747–817 | DOI | Zbl