Cantor Type Basic Sets of Surface $A$-endomorphisms
Russian journal of nonlinear dynamics, Tome 17 (2021) no. 3, pp. 335-345.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to an investigation of the genus of an orientable closed surface $M^2$ which admits $A$-endomorphisms whose nonwandering set contains a one-dimensional strictly invariant contracting repeller $\Lambda_r^{}$ with a uniquely defined unstable bundle and with an admissible boundary of finite type. First, we prove that, if $M^2$ is a torus or a sphere, then $M^2$ admits such an endomorphism. We also show that, if $ \Omega$ is a basic set with a uniquely defined unstable bundle of the endomorphism $f\colon M^2\to M^2$ of a closed orientable surface $M^2$ and $f$ is not a diffeomorphism, then $ \Omega$ cannot be a Cantor type expanding attractor. At last, we prove that, if $f\colon M^2\to M^2$ is an $A$-endomorphism whose nonwandering set consists of a finite number of isolated periodic sink orbits and a one-dimensional strictly invariant contracting repeller of Cantor type $\Omega_r^{}$ with a uniquely defined unstable bundle and such that the lamination consisting of stable manifolds of $\Omega_r^{}$ is regular, then $M^2$ is a two-dimensional torus $\mathbb{T}^2$ or a two-dimensional sphere $\mathbb{S}^2$.
Keywords: regular lamination, attractor, repeller, strictly invariant set.
Mots-clés : $A$-endomorphism
@article{ND_2021_17_3_a6,
     author = {V. Z. Grines and E. V. Zhuzhoma},
     title = {Cantor {Type} {Basic} {Sets} of {Surface} $A$-endomorphisms},
     journal = {Russian journal of nonlinear dynamics},
     pages = {335--345},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2021_17_3_a6/}
}
TY  - JOUR
AU  - V. Z. Grines
AU  - E. V. Zhuzhoma
TI  - Cantor Type Basic Sets of Surface $A$-endomorphisms
JO  - Russian journal of nonlinear dynamics
PY  - 2021
SP  - 335
EP  - 345
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2021_17_3_a6/
LA  - en
ID  - ND_2021_17_3_a6
ER  - 
%0 Journal Article
%A V. Z. Grines
%A E. V. Zhuzhoma
%T Cantor Type Basic Sets of Surface $A$-endomorphisms
%J Russian journal of nonlinear dynamics
%D 2021
%P 335-345
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2021_17_3_a6/
%G en
%F ND_2021_17_3_a6
V. Z. Grines; E. V. Zhuzhoma. Cantor Type Basic Sets of Surface $A$-endomorphisms. Russian journal of nonlinear dynamics, Tome 17 (2021) no. 3, pp. 335-345. http://geodesic.mathdoc.fr/item/ND_2021_17_3_a6/

[1] Tr. Mat. Inst. Steklova, 249 (2005), 3–239 (Russian)

[2] Grines, V. Z., “The Topological Equivalence of One-Dimensional Basic Sets of Diffeomorphisms on Two-Dimensional Manifolds”, Uspekhi Mat. Nauk, 29:6(180) (1974), 163–164 (Russian) | Zbl

[3] Grines, V. Z., “The Topological Conjugacy of Diffeomorphisms of a Two-Dimensional Manifold on One-Dimensional Orientable Basic Sets: 1”, Tr. Mosk. Mat. Obs., 32 (1975), 35–60 (Russian) | Zbl

[4] Grines, V. Z., “The Topological Conjugacy of Diffeomorphisms of a Two-Dimensional Manifold on One-Dimensional Orientable Basic Sets: 2”, Tr. Mosk. Mat. Obs., 34 (1977), 243–252 (Russian) | Zbl

[5] Mat. Sb., 188:4 (1997), 57–94 | DOI | DOI | Zbl

[6] Uspekhi Mat. Nauk, 34:4 (1979), 185–186 (Russian) | DOI | Zbl

[7] Dokl. Ross. Akad. Nauk, 374:6 (2000), 735–737 (Russian) | Zbl

[8] Mat. Sb., 212:5 (2021), 102–132 (Russian) | DOI | DOI | Zbl

[9] Grines, V. Z. and Kurenkov, E. D., “On Hyperbolic Attractors and Repellers of Endomorphisms”, Nelin. Dinam., 13:4 (2017), 557–571 (Russian) | DOI

[10] Kurenkov, E. D., “On Existence of an Endomorphism of $2$-Torus with Strictly Invariant Repeller”, Zh. SVMO, 19:1 (2017), 60–66 (Russian) | DOI | Zbl

[11] Mat. Sb. (N.S.), 94(136):2(6) (1974), 243–264 (Russian) | DOI

[12] Uspekhi Mat. Nauk, 39:6(240) (1984), 75–113 (Russian) | DOI | Zbl

[13] Grines, V. and Zhuzhoma, E., “On Structurally Stable Diffeomorphisms with Codimension One Expanding Attractors”, Trans. Amer. Math. Soc., 357:2 (2005), 617–667 | DOI | Zbl

[14] Grines, V. Z. and Zhuzhoma, E. V., Surface Laminations and Chaotic Dynamical Systems, R Dynamics, Institute of Computer Science, Izhevsk, 2021, 502 pp.

[15] Ikegami, G., “Hyperbolic Sets and Axiom A for Endomorphisms”, Proc. of Inst. of Natural Sciences, Nihon Univ., 26 (1991), 69–86

[16] Katok, A., “Bernoulli Diffeomorphisms on Surfaces”, Ann. of Math. (2), 110:3 (1979), 529–547 | DOI | Zbl

[17] Newhouse, S., “On Codimension One Anosov Diffeomorphisms”, Amer. J. Math., 92:3 (1970), 761–770 | DOI | Zbl

[18] Przytycki, F., “Anosov Endomorphisms”, Studia Math., 58:3 (1976), 249–285 | DOI | Zbl

[19] Przytycki, F., “On $\Omega$-Stability and Structural Stability of Endomorphisms Satisfying Axiom A”, Studia Math., 60:1 (1977), 61–77 | DOI | Zbl

[20] Shub, M., “Endomorphisms of Compact Differentiable Manifolds”, Amer. J. Math., 91:1 (1969), 175–199 | DOI | Zbl

[21] Smale, S., “Differentiable Dynamical Systems”, Bull. Amer. Math. Soc., 73:6 (1967), 747–817 | DOI | Zbl