Dynamical Chaos and Lateral Transport of a Passive
Russian journal of nonlinear dynamics, Tome 17 (2021) no. 3, pp. 263-274.

Voir la notice de l'article provenant de la source Math-Net.Ru

The transition to dynamical chaos and the related lateral (cross-flow) transport of a passive scalar in the reverse annular jet flow generating two chains of wave-vortex structures are studied. The quasi-geostrophic equations for the barotropic (quasi-two-dimensional) flow written in polar coordinates with allowance for the beta-effect and external friction are solved numerically using a pseudospectral method. The critical parameters of the equilibrium flow with a complex “two-hump” azimuth velocity profile facilitating a faster transition to the complex dynamics are determined. Two regular multiharmonic regimes of wave generation are revealed with increasing flow supercriticality before the onset of Eulerian chaos. The occurrence of the complex flow dynamics is confirmed by a direct calculation of the largest Lyapunov exponent. The evolution of streamline images is analyzed by making video, thereby chains with single and composite structures are distinguished. The wavenumber-frequency spectra confirming the possibility of chaotic transport of the passive scalar are drawn for the basic regimes of wave generation. The power law exponents for the azimuth particle displacement and their variance, which proved the occurrence of the anomalous azimuth transport of the passive scalar, are determined. Lagrangian chaos is studied by computing the finite-time Lyapunov exponent and its distribution function. The internal chain (with respect to the annulus center) is found to be totally subject to Lagrangian chaos, while only the external chain boundary is chaotic. It is revealed that the cross-flow transport occurs only in the regime of Eulerian dynamical chaos, since there exists a barrier to it in the multiharmonic regimes. The images of fluid particles confirming the presence of lateral transport are obtained and their quantitative characteristics are determined.
Keywords: barotropic jet flow, Eulerian and Lagrangian chaos, cross-flow chaotic transport.
Mots-clés : chains of wave structures
@article{ND_2021_17_3_a1,
     author = {V. P. Reutov and G. V. Rybushkina},
     title = {Dynamical {Chaos} and {Lateral} {Transport} of a {Passive}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {263--274},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2021_17_3_a1/}
}
TY  - JOUR
AU  - V. P. Reutov
AU  - G. V. Rybushkina
TI  - Dynamical Chaos and Lateral Transport of a Passive
JO  - Russian journal of nonlinear dynamics
PY  - 2021
SP  - 263
EP  - 274
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2021_17_3_a1/
LA  - en
ID  - ND_2021_17_3_a1
ER  - 
%0 Journal Article
%A V. P. Reutov
%A G. V. Rybushkina
%T Dynamical Chaos and Lateral Transport of a Passive
%J Russian journal of nonlinear dynamics
%D 2021
%P 263-274
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2021_17_3_a1/
%G en
%F ND_2021_17_3_a1
V. P. Reutov; G. V. Rybushkina. Dynamical Chaos and Lateral Transport of a Passive. Russian journal of nonlinear dynamics, Tome 17 (2021) no. 3, pp. 263-274. http://geodesic.mathdoc.fr/item/ND_2021_17_3_a1/

[1] Aref, H., Blake, J.R., Budisić, M., Cardoso, S. S. S., Cartwright, J.H. E., Clercx, H. J.H., El Omari, K., Feudel, U., Golestanian, R., Gouillart, E., van Heijst, G. J. F., Krasnopolskaya, T. S., Le Guer, Y., MacKay, R. S., Meleshko, V.V., Metcalfe, G., Mezić, I., de Moura, A.P. S., Piro, O., Speetjens, M. F.M., Sturman, R., Thiffeault, J.-L., and Tuval, I.,, “Frontiers of Chaotic Advection”, Rev. Modern Phys., 89:2 (2017), 025007, 66 pp. | DOI

[2] Branicki, M. and Wiggins, S., “Finite-Time Lagrangian Transport Analysis: Stable and Unstable Manifolds of Hyperbolic Trajectories and Finite-Time Lyapunov Exponents”, Nonlinear Proc. Geophys., 17:1 (2010), 1–36 | DOI

[3] Pis'ma v Zh. Èksper. Teoret. Fiz.,, 101:2 (2015), 84–89 (Russian) | DOI

[4] del-Castillo-Negrete, D., “Asymmetric Transport and Non-Gaussian Statistics of Passive Scalars in Vortices in Shear”, Phys. Fluids, 10:3 (1998), 576–594 | DOI | Zbl

[5] Uspekhi Fiz. Nauk, 160:7 (1990), 1–47 (Russian) | DOI | DOI

[6] Finn, J. M. and del-Castillo-Negrete, D., “Lagrangian Chaos and Eulerian Chaos in Shear Flow Dynamics”, Chaos, 11:4 (2001), 816–832 | DOI | Zbl

[7] Haines, K. H. and Malanotte-Rizzoli, P., “Isolated Anomalies in Westerly Jet Streams: A Unified Approach”, J. Atmos. Sci., 48:4 (1991), 510–526 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[8] Uspekhi Fiz. Nauk, 176:11 (2006), 1177–1206 (Russian) | DOI | DOI

[9] Liu, Y., Wilson, C., Green, M. A., and Hughes, C. W. J., “Gulf Stream Transport and Mixing Processes via Coherent Structure Dynamics”, J. Geophys. Res. Oceans, 123:4 (2018), 3014–3037 | DOI

[10] Reutov, V. P. and Rybushkina, G. V., “Anomalous Transport of a Passive Scalar at the Transition to Dynamical Chaos in a Barotropic Shear Layer”, Eur. J. Mech. B Fluids, 74 (2019), 211–218 | DOI

[11] Reutov, V. P. and Rybushkina, G. V., “Dynamical Model for the Anomalous Transport of a Passive Scalar in a Reverse Barotropic Jet Flow”, Russian J. Nonlinear Dyn., 15:3 (2019), 251–260 | Zbl

[12] Reutov, V. P. and Rybushkina, G. V., “Transition to the Dynamical Chaos and Anomalous Transport of a Passive Scalar in the Annular Kolmogorov Flow”, Phys. Fluids, 32:10 (2020), 106601, 10 pp. | DOI

[13] Rogerson, A. M., Miller, P. D., Pratt, L. J., and Jones, C. K. R. T., “Lagrangian Motion and Fluid Exchange in a Barotropic Meandering Jet”, J. Phys. Oceanogr., 29:10 (1999), 2635–2655 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[14] Ryzhov, E. A. and Koshel, K. V., “Advection of Passive Scalars Induced by a Bay-Trapped Nonstationary Vortex”, Ocean Dynamics, 68 (2018), 411–422 | DOI

[15] Samelson, R. M., “Fluid Exchange across a Meandering Jet”, J. Phys. Oceanogr., 22:4 (1992), 431–440 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[16] van de Konijnenberg, J. A., Nielsen, A. H., Rasmussen, J. J., and Stenum, B., “Shear-Flow Instability in a Rotating Fluid”, J. Fluid Mech., 387 (1999), 177–204 | DOI | Zbl

[17] Wiggins, S., “The Dynamical Systems Approach to Lagrangian Transport in Oceanic Flows”, Annu. Rev. Fluid Mech., 37 (2005), 295–328 | DOI | Zbl