Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2021_17_2_a6, author = {M. V. Yashina and A. G. Tatashev}, title = {A {Two-Contour} {System} with {Two} {Clusters}}, journal = {Russian journal of nonlinear dynamics}, pages = {221--242}, publisher = {mathdoc}, volume = {17}, number = {2}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2021_17_2_a6/} }
M. V. Yashina; A. G. Tatashev. A Two-Contour System with Two Clusters. Russian journal of nonlinear dynamics, Tome 17 (2021) no. 2, pp. 221-242. http://geodesic.mathdoc.fr/item/ND_2021_17_2_a6/
[1] Wolfram, S., “Statistical Mechanics of Cellular Automata”, Rev. Mod. Phys., 55:3 (1983), 601–644 | DOI | MR | Zbl
[2] Spitzer, F., “Interaction of Markov Processes”, Adv. Math., 5:2 (1970), 246–290 | DOI | MR | Zbl
[3] Belitsky, V. and Ferrari, P. A., “Invariant Measures and Convergence Properties for Cellular Automaton 184 and Related Processes”, J. Stat. Phys., 118:3–4 (2005), 589–523 | DOI | MR
[4] Gray, L. and Griffeath, D., “The Ergodic Theory of Traffic Jams”, J. Statist. Phys., 105:3–4 (2001), 413–452 | DOI | MR | Zbl
[5] Kanai, M., Nishinary, K., and Tokihiro, T., “Exact Solution and Asymptotic Behavior of the Asymmetric Behavior of the Asymetric Simple Exclusion Process on a Ring”, J. Phys. A, 39:29 (2009), 10 pp. | DOI | MR
[6] Blank, M., “Metric Properties of Discrete Time Exclusion Type Processes in Continuum”, J. Stat. Phys., 140:1 (2010), 170–197 | DOI | MR | Zbl
[7] Middleton, A., Biham, O., and Levine, D., “Self-Organization and a Dynamic Transition in Traffic-Flow Models”, Phys. Rev. A, 46:10 (1992), R6124–R6127 | DOI
[8] D'Souza, R. M., “Coexisting Phases and Lattice Dependence of a Cellular Automaton Model for Traffic Flow”, Phys. Rev. E, 71:6 (2005), 066112, 10 pp. | DOI | MR
[9] Yashina, M. and Tatashev, A., “Traffic Model Based on Synchronous and Asynchronous Exclusion Processes”, Math. Methods Appl. Sci., 43:14 (2020), 8136–8146 | DOI | MR | Zbl
[10] Bugaev, A. S., Buslaev, A. P., Kozlov, V. V., and Yashina, M. V., “Distributed Problems of Monitoring and Modern Approaches to Traffic Modeling”, Proc. of the 14th Internat. IEEE Conf. on Intelligent Transportation Systems (ITSC, Washington, D.C., Oct 2011), 477–481 | MR
[11] Kozlov, V. V., Buslaev, A. P., and Tatashev, A. G., “On Synergy of Totally Connected Flows on Chainmails”, Proc. of the 13th Internat. Conf. on Computational and Mathematical Methods in Science and Engineering (Almeria, Spain, June 2013), v. 3, 861–874
[12] Buslaev, A. P. and Tatashev, A. G., “Exact Results for Discrete Dynamical Systems on a Pair of Contours”, Math. Methods Appl. Sci., 41:17 (2018), 7283–7294 | DOI | MR | Zbl
[13] Tatashev, A. G. and Yashina, M. V., “Behavior of Continuous Two-Contours System”, WSEAS Trans. Math., 18 (2019), 4, 28–36
[14] Tatashev, A. G. and Yashina, M. V., “Self-Organization of Two-Contours Dynamical System with Common Node and Cross Movement”, WSEAS Trans. Math., 18 (2019), 45, 373–378
[15] Myshkis, P. A., Tatashev, A. G., and Yashina, M. V., “Cluster Motion in a Two-Contour System with Priority Rule for Conflict Resolution”, J. Comput. Syst. Sci. Int., 59:3 (2020), 311–321 | DOI | MR | Zbl
[16] Yashina, M. V. and Tatashev, A. G., “Spectral Cycles and Average Velocity of Clusters in Discrete Two-Contours System with Two Nodes”, Math. Methods Appl. Sci., 43:7 (2020), 4303–4316 | MR | Zbl
[17] Yashina, M. V. and Tatashev, A. G., “Uniform Cluster Traffic Model on Closed Two-Contours System with Two Non-symmetrical Common Nodes”, Traffic and Granular Flow 2019, Springer Proc. in Phys., 252, eds. I. Zuriguel, A. Garcimartin, R. Cruz, Springer, Cham, 2020, 583–588 | DOI | MR
[18] Yashina, M. V., Tatashev, A. G., and Fomina, M. Yu., “Optimization of Velocity Mode in Buslaev Two-Contour Networks via Competition Resolution Rules”, Int. J. Interact. Mob. Technol., 14:10 (2020), 61–73 | DOI
[19] Buslaev, A. P., Tatashev, A. G., and Yashina, M. V., “Flow Spectrum of Closed/Open Contours Chains”, Comput. Math. Methods, 3:3 (2021), e1087, 13 pp. | DOI
[20] Buslaev, A. P., Tatashev, A. G., and Yashina, M. V., “About Synergy of Flows on Flower”, Dependability Engineering and Complex Systems: Proc. of the 11th Internat. Conf. on Dependability and Complex Systems (Brunow, Poland, 2016), Adv. Intell. Syst. Comput., 470, eds. W. Zamojski, J. Mazurkiewicz, J. Sugier, T. Walkowiak, J. Kacprzyk, Springer, Cham, 2016, 75–84
[21] Kozlov, V. V., Buslaev, A. P., and Tatashev, A. G., “Monotonic Walks on a Necklace and a Coloured Dynamical Vector”, Int. J. Comput. Math., 92:9 (2015), 1910–1920 | DOI | MR | Zbl
[22] Tatashev, A. G. and Yashina, M. V., “Spectrum of Elementary Cellular Automata and Closed Chains of Contours”, Machines, 7:2 (2019), 28, 12 pp. | DOI
[23] Buslaev, A. P., Fomina, M. Yu., Tatashev, A. G., and Yashina, M. V., “On Discrete Flow Networks Model Spectra: Statements, Simulation, Hypotheses”, J. Phys. Conf. Ser., 1053:1 (2018), 012034, 7 pp. | DOI
[24] Tatashev, A. G. and Yashina, M. V., “Discrete Open Buslaev Chain with Heterogeneous Loading”, Proc. of the 7th Internat. Conf. on Control, Mechatronics and Automation (ICCMA, Nov 6–8, 2019, Delft, Netherlands), 283–288
[25] Buslaev, A. P., Tatashev, A. G., and Yashina, M. V., “Qualitative Properties of Dynamical System on Toroidal Chainmail”, AIP Conf. Proc., v. 1558, no. 1, 2013, 1144–1147 | DOI
[26] Kuteynikov, I. A., Tatashev, A. G., and Yashina, M. V., “On Properties of Closed/Open Two-Dimensional Network-Chainmail with Different Rules of Particle Movement”, Period. Eng. Nat. Sci., 7:1 (2019), 447–457
[27] Kozlov, V. V., Buslaev, A. P., Tatashev, A. G., and Yashina, M. V., “Dynamical Systems on Honeycombs”, Traffic and Granular Flow'13, eds. M. Chraibi, M. Boltes, A. Schadschneider, A. Seyfried, Springer, Cham, 2015, 441–452
[28] Kerner, B. S., Klenov, S. L., and Wolf, D. E., “Cellelar Automata Approach to Three-Phase Traffic Theory”, Phys. A., 35:47 (2002), 9971–10014 | DOI | MR