Nonlinear Processes in Safety Systems for Substances
Russian journal of nonlinear dynamics, Tome 17 (2021) no. 1, pp. 119-138.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper presents a modification of the digital method by S. K. Godunov for calculating real gas flows under conditions close to a critical state. The method is generalized to the case of the Van der Waals equation of state using the local approximation algorithm. Test calculations of flows in a shock tube have shown the validity of this approach for the mathematical description of gas-dynamic processes in real gases with shock waves and contact discontinuity both in areas with classical and nonclassical behavior patterns. The modified digital scheme by Godunov with local approximation of the Van der Waals equation by a two-term equation of state was used for simulating a spatial flow of real gas based on Navier – Stokes equations in the area of a complex shape, which is characteristic of the internal space of a safety valve. We have demonstrated that, under near-critical conditions, areas of nonclassical gas behavior may appear, which affects the nature of flows. We have studied nonlinear processes in a safety valve arising from the movement of the shut-off element, which are also determined by the device design features and the gas flow conditions.
Keywords: real gas, Van der Waals equation, critical state of substance, Godunov’s method.
@article{ND_2021_17_1_a8,
     author = {T. Raeder and V. A. Tenenev and M. R. Koroleva and O. V. Mishchenkova},
     title = {Nonlinear {Processes} in {Safety} {Systems} for {Substances}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {119--138},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2021_17_1_a8/}
}
TY  - JOUR
AU  - T. Raeder
AU  - V. A. Tenenev
AU  - M. R. Koroleva
AU  - O. V. Mishchenkova
TI  - Nonlinear Processes in Safety Systems for Substances
JO  - Russian journal of nonlinear dynamics
PY  - 2021
SP  - 119
EP  - 138
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2021_17_1_a8/
LA  - en
ID  - ND_2021_17_1_a8
ER  - 
%0 Journal Article
%A T. Raeder
%A V. A. Tenenev
%A M. R. Koroleva
%A O. V. Mishchenkova
%T Nonlinear Processes in Safety Systems for Substances
%J Russian journal of nonlinear dynamics
%D 2021
%P 119-138
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2021_17_1_a8/
%G en
%F ND_2021_17_1_a8
T. Raeder; V. A. Tenenev; M. R. Koroleva; O. V. Mishchenkova. Nonlinear Processes in Safety Systems for Substances. Russian journal of nonlinear dynamics, Tome 17 (2021) no. 1, pp. 119-138. http://geodesic.mathdoc.fr/item/ND_2021_17_1_a8/

[1] Argrow, B. M., “Computational Analysis of Dense Gas Shock Tube Flow”, Shock Waves, 6 (1996), 241–248 | DOI | Zbl

[2] Beune, A., Analysis of High-Pressure Safety Valves, PhD Thesis, Technische Universiteit Eindhoven, Eindhoven, 2009, 136 pp.

[3] Casari, N., Pinelli, M., Suman, A., and Pavanelli, G., “Reducing Pressure Valve with Real Gases: An Integrated Approach for the Design”, 73rd Conf. of the Italian Thermal Machines Engineering Association, 2018, 607–614

[4] Colella, P. and Glaz, H. M., “Efficient Solution Algorithms for the Riemann Problem for Real Gases”, J. Comput. Phys., 59:2 (1985), 264–289 | DOI | MR | Zbl

[5] Colonna, P. and Guardone, A., “Molecular Interpretation of Nonclassical Gasdynamics of Dense Vapors under the van der Waals Model”, Phys. Fluids, 18:5 (2006), 056101, 14 pp. | DOI

[6] Dahmen, W., Muller, S., and Vob, A., “Riemann Problem for the Euler Equation with Non-Convex Equation of State including Phase Transitions”, Analysis and Numerics for Conservation Laws, ed. G. Warnecke, Springer, Berlin, 2005, 137–162 | DOI | MR | Zbl

[7] Davidson, R., Pre-Combustion Capture of $\mathrm{CO}_2$ in IGCC Plants, IEA Clean Coal Centre, London, 2011, 98 pp.

[8] Fossati, M. and Quartapelle, L., The Riemann Problem for Hyperbolic Equations under a Nonconvex Flux with Two Inflection Points, 2014, arXiv: 1402.5906 [physics.flu-dyn] | Zbl

[9] Numerical Solution of Multidimensional Problems of Gas Dynamics, ed. S. K. Godunov, Nauka, Moscow, 1976, 400 pp. (Russian) | MR

[10] Guardone, A. and Vigevano, L., “Roe Linearization for the van der Waals Gas”, J. Comput. Phys., 175:1 (2002), 50–78 | DOI | MR | Zbl

[11] Guardone, A. and Vimercati, D., “Exact Solutions to Non-Classical Steady Nozzle Flows of Bethe – Zel'dovich – Thompson Fluids”, J. Fluid Mech., 800 (2016), 278–306 | DOI | MR | Zbl

[12] Henderson, L. F., “General Laws for Propagation of Shock Waves through Matter”, Handbook of Shock Waves: Vol. 1. Theoretical, Experimental, and Numerical Techniques, eds. G. Ben-Dor, O. Igra, R. Elperin, Acad. Press, San Diego, 2000, 143–183

[13] Kopyshev, V. P., Medvedev, A. B., and Khrustalev, V. V., “Equation of State of Explosion Products on the Basis of a Modified van der Waals Model”, Combust. Explos. Shock Waves, 42:1 (2006), 76–87 | DOI

[14] Kulikovskii, A. G., Pogorelov, N. V., and Semenov, A. Yu., Mathematical Problems of the Numerical Solution of Hyperbolic Systems of Equations, Chapman Hall/CRC Monogr. Surv. Pure Appl. Math., 118, Chapman Hall/CRC, New York, 2001, 560 pp. | MR

[15] Kuzenov, V. V., Ryzhkov, S. V., and Starostin, A. V., “Development of a Mathematical Model and the Numerical Solution Method in a Combined Impact Scheme for MIF Target”, Russian J. Nonlinear Dyn., 16:2 (2020), 325–341 | MR

[16] Lipanov, A. M., Dadikina, S. Yu., Shumikhin, A. A., Koroleva, M. R., and Karpov, A. I., “Numerical Simulation Intra-Chamber of Unsteady Turbulent Flows Stimulate: Part 1”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 12:1 (2019), 32–43 (Russian) | Zbl

[17] Lopez-Echeverry, J., Reif-Acherman, S., and Araujo-Lopez, E., “Peng – Robinson Equation of State: 40 Years through Cubics”, Fluid Ph. Equilibria, 447 (2017), 39–71 | DOI

[18] Zh. Vychisl. Mat. Mat. Fiz., 48:6 (2008), 1102–1110. (Russian) | DOI | MR | Zbl

[19] Osher, S. and Solomon, F., “Upwind Difference Schemes for Hyperbolic Systems of Conservation Laws”, Math. Comput., 38:158 (1982), 339–374 | DOI | MR | Zbl

[20] Papes, I., Abdelli, L., Degroote, J., and Vierendeels, J., “3D CFD Analysis of a Twin Screw Expander With Different Real Gas Models for R245fa”, ASME 2015 International Mechanical Engineering Congress and Exposition (Houston, Tex., Nov 13–19, 2015), IMECE2015-53388, V07AT09A045, 8 pp.

[21] Polezhaev, V. I., “Methods for Modeling Convective and Wave Processes and Heat Transfer in Real-Critical Media: An Overview”, Fluid Dyn., 46:1 (2011), 1–15 | DOI | MR | Zbl

[22] Prokopov, G. P. and Severin, A. V., Rational Realization of Godunov's Method, Preprint No. 29, KIAM, Moscow, 2009, 24 pp. (Russian)

[23] Quartapelle, L., Castelletti, L., Guardone, A., and Quaranta, G., “Solution of the Riemann Problem of Classical Gasdynamics”, J. Comput. Phys., 190:1 (2003), 118–140 | DOI | MR | Zbl

[24] Raeder, T., Tenenev, V. A., and Chernova, A. A., “Determination of Flow Characteristics in Technological Processes with Controlled Pressure”, Instruments and Methods of Measurement, 11:3 (2020), 204–211

[25] Raeder, T., Tenenev, V. A., and Chernova, A. A., “Numerical Simulation of Unstable Operating Modes of a Safety Valve”, Vestn. Tomsk. Univ. Mat. Mekh., 2020, no. 68, 141–157 (Russian) | MR

[26] Raeder, T., Tenenev, V., Chernova, A., and Koroleva, M., “Multilevel Simulation of Direct Operarted Safety Valve”, 2018 Ivannikov Ispras Open Conference (ISPRAS, Moscow, 2018), 109–115

[27] Raeder, T., Tenenev, V., and Koroleva, M., “Numerical Simulation of the Working Process in a Safety Valve with Additional Gas-Dynamic Coupling”, Intellekt. Sist. Proizv., 18:3 (2020), 118–126 (Russian) | DOI

[28] Reid, R. C., Prausnitz, J. M., and Sherwood, Th. K., The Properties of Gases and Liquids, McGraw-Hill, New York, 1977, xv, 688 pp.

[29] Rinaldi, E., Pecnik, R., and Colonna, P., “Exact Jacobians for Implicit Navier – Stokes Simulations of Equilibrium Real Gas Flows”, J. Comput. Phys., 270 (2014), 459–477 | DOI | MR | Zbl

[30] Sexton, A., “Modeling Real Gases and Liquids Using a Modified van der Waals Equation of State”, Electronic Theses and Dissertations, 2004, 1301, 88 pp.

[31] Toroa, E., Castrob, C., and Leec, B., “A Novel Numerical Flux for the 3D Euler Equations with General Equation of State”, J. Comput. Phys., 303 (2015), 80–94 | DOI | MR