Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2020_16_4_a7, author = {P. Guha and S. Garai and A. G. Choudhury}, title = {Lax {Pairs} and {First} {Integrals} for {Autonomous} and {Non-Autonomous} {Differential} {Equations} {Belonging} to the {Painlev\'e} {\textendash} {Gambier} {List}}, journal = {Russian journal of nonlinear dynamics}, pages = {637--650}, publisher = {mathdoc}, volume = {16}, number = {4}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2020_16_4_a7/} }
TY - JOUR AU - P. Guha AU - S. Garai AU - A. G. Choudhury TI - Lax Pairs and First Integrals for Autonomous and Non-Autonomous Differential Equations Belonging to the Painlevé – Gambier List JO - Russian journal of nonlinear dynamics PY - 2020 SP - 637 EP - 650 VL - 16 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2020_16_4_a7/ LA - ru ID - ND_2020_16_4_a7 ER -
%0 Journal Article %A P. Guha %A S. Garai %A A. G. Choudhury %T Lax Pairs and First Integrals for Autonomous and Non-Autonomous Differential Equations Belonging to the Painlevé – Gambier List %J Russian journal of nonlinear dynamics %D 2020 %P 637-650 %V 16 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2020_16_4_a7/ %G ru %F ND_2020_16_4_a7
P. Guha; S. Garai; A. G. Choudhury. Lax Pairs and First Integrals for Autonomous and Non-Autonomous Differential Equations Belonging to the Painlevé – Gambier List. Russian journal of nonlinear dynamics, Tome 16 (2020) no. 4, pp. 637-650. http://geodesic.mathdoc.fr/item/ND_2020_16_4_a7/
[1] Sinelshchikov, D. I., Gaiur, I. Yu., and Kudryashov, N. A., “Lax Representation and Quadratic First Integrals for a Family of Non-Autonomous Second-Order Differential Equations”, J. Math. Anal. Appl., 480:1 (2019), 123375, 14 pp. | DOI | MR | Zbl
[2] Adler, M. and van Moerbeke, P., “Completely Integrable Systems, Euclidean Lie Algebras, and Curves”, Adv. in Math., 38:3 (1980), 267–317 | DOI | MR | Zbl
[3] Griffiths, Ph. A., “Linearizing Flows and a Cohomological Interpretation of Lax Equations”, Amer. J. Math., 107:6 (1985), 1445–1484 | DOI | MR | Zbl
[4] Ravoson, V., Gavrilov, L., and Caboz, R., “Separability and Lax Pairs for Hénon – Heiles System”, J. Math. Phys., 34:6 (1993), 2385–2393 | DOI | MR | Zbl
[5] Fairbanks, L. D., “Lax Equation Representation of Certain Completely Integrable Systems”, Compositio Math., 68:1 (1988), 31–40 | MR | Zbl
[6] Kudryashov, N. A. and Sinelshchikov, D. I., “On Connections of the Liénard Equation with Some Equations of Painlevé – Gambier Type”, J. Math. Anal. Appl., 449:2 (2017), 1570–1580 | DOI | MR | Zbl
[7] Ince, E. L., Ordinary Differential Equations, Dover, New York, 1956, 576 pp. | MR
[8] Guha, P., Khanra, B., and Choudhury, A. Gh., “On Generalized Sundman Transformation Method, First Integrals, Symmetries and Solutions of Equations of Painlevé – Gambier Type”, Nonlinear Anal., 72:7–8 (2010), 3247–3257 | DOI | MR | Zbl
[9] Kudryashov, N. A. and Pickering, A., “Rational Solutions for Schwarzian Integrable Hierarchies”, J. Phys. A., 31:47 (1998), 9505–9518 | DOI | MR | Zbl
[10] Kudryashov, N. and Soukharev, M., “Uniformization and Transcendence of Solutions for the First and Second Painlevé Hierarchies”, Phys. Lett. A., 237:4–5 (1998), 206–216 | DOI | MR | Zbl
[11] Kudryashov, N. A., “Two Hierarchies of Ordinary Differential Equations and Their Properties”, Phys. Lett. A., 252 (1999), 173–179 | DOI | MR | Zbl
[12] Kudryashov, N. A., “Transcendents Defined by Nonlinear Fourth-Order Ordinary Differential Equations”, J. Phys. A., 32:6 (1999), 999–1013 | DOI | MR | Zbl
[13] Weiss, J., “The Painlevé Property for Partial Differential Equations: 2. Bäcklund Transformation, Lax Pairs, and the Schwarzian Derivative”, J. Math. Phys., 24:6 (1983), 1405–1413 | DOI | MR | Zbl