Lax Pairs and First Integrals for Autonomous and Non-Autonomous Differential Equations Belonging to the Painlevé – Gambier List
Russian journal of nonlinear dynamics, Tome 16 (2020) no. 4, pp. 637-650.

Voir la notice de l'article provenant de la source Math-Net.Ru

Recently Sinelshchikov et al. [1] formulated a Lax representation for a family of nonautonomous second-order differential equations. In this paper we extend their result and obtain the Lax pair and the associated first integral of a non-autonomous version of the Levinson – Smith equation. In addition, we have obtained Lax pairs and first integrals for several equations of the Painlevé – Gambier list, namely, the autonomous equations numbered XII, XVII, XVIII, XIX, XXI, XXII, XXIII, XXIX, XXXII, XXXVII, XLI, XLIII, as well as the non-autonomous equations Nos. XV and XVI in Ince’s book.
Keywords: Lax representation, first integrals.
Mots-clés : Liénard type equations, Painlevé – Gambier equations
@article{ND_2020_16_4_a7,
     author = {P. Guha and S. Garai and A. G. Choudhury},
     title = {Lax {Pairs} and {First} {Integrals} for {Autonomous} and {Non-Autonomous} {Differential} {Equations} {Belonging} to the {Painlev\'e} {\textendash} {Gambier} {List}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {637--650},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2020_16_4_a7/}
}
TY  - JOUR
AU  - P. Guha
AU  - S. Garai
AU  - A. G. Choudhury
TI  - Lax Pairs and First Integrals for Autonomous and Non-Autonomous Differential Equations Belonging to the Painlevé – Gambier List
JO  - Russian journal of nonlinear dynamics
PY  - 2020
SP  - 637
EP  - 650
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2020_16_4_a7/
LA  - ru
ID  - ND_2020_16_4_a7
ER  - 
%0 Journal Article
%A P. Guha
%A S. Garai
%A A. G. Choudhury
%T Lax Pairs and First Integrals for Autonomous and Non-Autonomous Differential Equations Belonging to the Painlevé – Gambier List
%J Russian journal of nonlinear dynamics
%D 2020
%P 637-650
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2020_16_4_a7/
%G ru
%F ND_2020_16_4_a7
P. Guha; S. Garai; A. G. Choudhury. Lax Pairs and First Integrals for Autonomous and Non-Autonomous Differential Equations Belonging to the Painlevé – Gambier List. Russian journal of nonlinear dynamics, Tome 16 (2020) no. 4, pp. 637-650. http://geodesic.mathdoc.fr/item/ND_2020_16_4_a7/

[1] Sinelshchikov, D. I., Gaiur, I. Yu., and Kudryashov, N. A., “Lax Representation and Quadratic First Integrals for a Family of Non-Autonomous Second-Order Differential Equations”, J. Math. Anal. Appl., 480:1 (2019), 123375, 14 pp. | DOI | MR | Zbl

[2] Adler, M. and van Moerbeke, P., “Completely Integrable Systems, Euclidean Lie Algebras, and Curves”, Adv. in Math., 38:3 (1980), 267–317 | DOI | MR | Zbl

[3] Griffiths, Ph. A., “Linearizing Flows and a Cohomological Interpretation of Lax Equations”, Amer. J. Math., 107:6 (1985), 1445–1484 | DOI | MR | Zbl

[4] Ravoson, V., Gavrilov, L., and Caboz, R., “Separability and Lax Pairs for Hénon – Heiles System”, J. Math. Phys., 34:6 (1993), 2385–2393 | DOI | MR | Zbl

[5] Fairbanks, L. D., “Lax Equation Representation of Certain Completely Integrable Systems”, Compositio Math., 68:1 (1988), 31–40 | MR | Zbl

[6] Kudryashov, N. A. and Sinelshchikov, D. I., “On Connections of the Liénard Equation with Some Equations of Painlevé – Gambier Type”, J. Math. Anal. Appl., 449:2 (2017), 1570–1580 | DOI | MR | Zbl

[7] Ince, E. L., Ordinary Differential Equations, Dover, New York, 1956, 576 pp. | MR

[8] Guha, P., Khanra, B., and Choudhury, A. Gh., “On Generalized Sundman Transformation Method, First Integrals, Symmetries and Solutions of Equations of Painlevé – Gambier Type”, Nonlinear Anal., 72:7–8 (2010), 3247–3257 | DOI | MR | Zbl

[9] Kudryashov, N. A. and Pickering, A., “Rational Solutions for Schwarzian Integrable Hierarchies”, J. Phys. A., 31:47 (1998), 9505–9518 | DOI | MR | Zbl

[10] Kudryashov, N. and Soukharev, M., “Uniformization and Transcendence of Solutions for the First and Second Painlevé Hierarchies”, Phys. Lett. A., 237:4–5 (1998), 206–216 | DOI | MR | Zbl

[11] Kudryashov, N. A., “Two Hierarchies of Ordinary Differential Equations and Their Properties”, Phys. Lett. A., 252 (1999), 173–179 | DOI | MR | Zbl

[12] Kudryashov, N. A., “Transcendents Defined by Nonlinear Fourth-Order Ordinary Differential Equations”, J. Phys. A., 32:6 (1999), 999–1013 | DOI | MR | Zbl

[13] Weiss, J., “The Painlevé Property for Partial Differential Equations: 2. Bäcklund Transformation, Lax Pairs, and the Schwarzian Derivative”, J. Math. Phys., 24:6 (1983), 1405–1413 | DOI | MR | Zbl