Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2020_16_4_a4, author = {V. Z. Grines and E. V. Kruglov and O. V. Pochinka}, title = {The {Topological} {Classification} of {Diffeomorphisms} of the {Two-Dimensional} {Torus} with an {Orientable} {Attractor}}, journal = {Russian journal of nonlinear dynamics}, pages = {595--606}, publisher = {mathdoc}, volume = {16}, number = {4}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2020_16_4_a4/} }
TY - JOUR AU - V. Z. Grines AU - E. V. Kruglov AU - O. V. Pochinka TI - The Topological Classification of Diffeomorphisms of the Two-Dimensional Torus with an Orientable Attractor JO - Russian journal of nonlinear dynamics PY - 2020 SP - 595 EP - 606 VL - 16 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2020_16_4_a4/ LA - ru ID - ND_2020_16_4_a4 ER -
%0 Journal Article %A V. Z. Grines %A E. V. Kruglov %A O. V. Pochinka %T The Topological Classification of Diffeomorphisms of the Two-Dimensional Torus with an Orientable Attractor %J Russian journal of nonlinear dynamics %D 2020 %P 595-606 %V 16 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2020_16_4_a4/ %G ru %F ND_2020_16_4_a4
V. Z. Grines; E. V. Kruglov; O. V. Pochinka. The Topological Classification of Diffeomorphisms of the Two-Dimensional Torus with an Orientable Attractor. Russian journal of nonlinear dynamics, Tome 16 (2020) no. 4, pp. 595-606. http://geodesic.mathdoc.fr/item/ND_2020_16_4_a4/
[1] Franks, J., “Anosov Diffeomorphisms”, Global Analysis: Proc. Sympos. Pure Math, Berkeley, Calif., 14, AMS, Providence, R.I., 1968, 61–93 | MR
[2] Grines, V. Z., “The Topological Equivalence of One-Dimensional Basic Sets of Diffeomorphisms on Two-Dimensional Manifolds”, Uspekhi Mat. Nauk, 29:6(180) (1974), 163–164 (Russian) | MR | Zbl
[3] Grines, V. Z., “The Topological Conjugacy of Diffeomorphisms of a Two-Dimensional Manifold on One-Dimensional Orientable Basic Sets: 1”, Trudy Moskov. Mat. Obsc., 32 (1975), 35–60 (Russian) | MR | Zbl
[4] Grines, V. Z., “The Topological Conjugacy of Diffeomorphisms of a Two-Dimensional Manifold on One-Dimensional Orientable Basic Sets: 2”, Trudy Moskov. Mat. Obsc., 34 (1977), 243–252 (Russian) | MR | Zbl
[5] Grines, V., Medvedev, T., and Pochinka, O., Dynamical Systems on $2$- and $3$-Manifolds edution Dev. Math., v. 46, Springer, New York, 2016, XXVI, 295 pp. | MR
[6] Izv. Ross. Akad. Nauk Ser. Mat., 66:2 (2002), 3–66 (Russian) | DOI | DOI | MR | Zbl
[7] Mañé, R., “A Proof of the $C^1$ Stability Conjecture”, Publ. Math. Inst. Hautes Études Sci., 66 (1987), 161–210 | DOI | MR
[8] Mat. Sb. (N. S.), 84(126):2 (1971), 301–312 (Russian) | DOI | MR | Zbl | Zbl
[9] Robinson, C., “Structural Stability of $C^1$ Diffeomorphisms”, J. Differential Equations, 22:1 (1976), 28–73 | DOI | MR | Zbl
[10] Mat. Sb., 193:6 (2002), 83–104 (Russian) | DOI | DOI | MR | Zbl