Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2020_16_4_a3, author = {B. S. Bardin}, title = {On a {Method} of {Introducing} {Local} {Coordinates} in the {Problem} of the {Orbital} {Stability} of {Planar} {Periodic} {Motions} of a {Rigid} {Body}}, journal = {Russian journal of nonlinear dynamics}, pages = {581--594}, publisher = {mathdoc}, volume = {16}, number = {4}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2020_16_4_a3/} }
TY - JOUR AU - B. S. Bardin TI - On a Method of Introducing Local Coordinates in the Problem of the Orbital Stability of Planar Periodic Motions of a Rigid Body JO - Russian journal of nonlinear dynamics PY - 2020 SP - 581 EP - 594 VL - 16 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2020_16_4_a3/ LA - ru ID - ND_2020_16_4_a3 ER -
%0 Journal Article %A B. S. Bardin %T On a Method of Introducing Local Coordinates in the Problem of the Orbital Stability of Planar Periodic Motions of a Rigid Body %J Russian journal of nonlinear dynamics %D 2020 %P 581-594 %V 16 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2020_16_4_a3/ %G ru %F ND_2020_16_4_a3
B. S. Bardin. On a Method of Introducing Local Coordinates in the Problem of the Orbital Stability of Planar Periodic Motions of a Rigid Body. Russian journal of nonlinear dynamics, Tome 16 (2020) no. 4, pp. 581-594. http://geodesic.mathdoc.fr/item/ND_2020_16_4_a3/
[1] Birkhoff, G. D., Dynamical Systems, AMS, Providence, RI, 1966, 305 pp. | MR | Zbl
[2] Giacaglia, G. E. O., Perturbation Methoda in Non-Linear Systems, Appl. Math. Sci., 8, Springer, New York, 1972, ix, 369 pp. | DOI | MR
[3] Markeev, A. P., Libration Points in Celestial Mechanics and Space Dynamics, Nauka, Moscow, 1978, 312 pp. (Russian)
[4] Siegel, C. and Moser, J., Lectures on Celestial Mechanics, Grundlehren Math. Wiss., 187, Springer, New York, 1971, xii+290 pp. | DOI | MR | Zbl
[5] Uspekhi Mat. Nauk, 18:6(114) (1963), 91–192 (Russian) | DOI | MR | Zbl
[6] Kosmicheskie Issledovaniya, 13:3 (1975), 322–336 (Russian) | MR
[7] Markeev, A. P. and Bardin, B. S., “On the Stability of Planar Oscillations and Rotations of a Satellite in a Circular Orbit”, Celest. Mech. Dynam. Astronom., 85:1 (2003), 51–66 | DOI | MR | Zbl
[8] Prikl. Mat. Mekh., 65:1 (2001), 51–58 (Russian) | DOI | MR | Zbl
[9] Bardin, B. S., Rudenko, T. V., and Savin, A. A., “On the Orbital Stability of Planar Periodic Motions of a Rigid Body in the Bobylev – Steklov Case”, Regul. Cahotic Dyn., 17:6 (2012), 533–546 | DOI | MR | Zbl
[10] Bardin, B. S., “On the Orbital Stability of Pendulum-Like Motions of a Rigid Body in the Bobylev – Steklov Case”, Regul. Chaotic Dyn., 15:6 (2010), 702–714 | DOI | MR
[11] Bardin, B. S. and Savin, A. A., “On the Orbital Stability of Pendulum-Like Oscillations and Rotations of a Symmetric Rigid Body with a Fixed Point”, Regul. Chaotic Dyn., 17:3–4 (2012), 243–257 | DOI | MR | Zbl
[12] Prikl. Mat. Mekh., 77:6 (2013), 806–821 (Russian) | DOI | MR | Zbl
[13] Prikl. Mat. Mekh., 66:6 (2002), 929–938 (Russian) | DOI | MR
[14] Uspekhi Mat. Nauk, 65:2 (2010), 71–132 (Russian) | DOI | DOI | MR | Zbl
[15] Bobylev, D. N., “On a Particular Solution of the Differential Equations of a Heavy Rigid Body Rotation around of a Fixed Point”, Tr. Otdel. Fiz. Nauk Obsch. Lyubit. Estestvozn., 8:2 (1896), 21–25 (Russian)
[16] Steklov, V. A., “A Certain Case of Motion of Heavy Rigid Body Having Fixed Point”, Tr. Otdel. Fiz. Nauk Obsch. Lubit. Estestvozn., 8:1 (1896), 19–21 (Russian)
[17] Borisov, A. V. and Mamaev, I. S., Rigid Body Dynamics, R Dynamics, Institute of Computer Science, Moscow – Izhevsk, 2001 (Russian) | MR
[18] Gradshtein, I. S. and Ryzhik, I. M., Table of Integrals, Series, and Products, 7th ed., Acad. Press, Amsterdam, 2007, 1200 pp. | MR | Zbl