On a Method of Introducing Local Coordinates in the Problem of the Orbital Stability of Planar Periodic Motions of a Rigid Body
Russian journal of nonlinear dynamics, Tome 16 (2020) no. 4, pp. 581-594.

Voir la notice de l'article provenant de la source Math-Net.Ru

A method is presented of constructing a nonlinear canonical change of variables which makes it possible to introduce local coordinates in a neighborhood of periodic motions of an autonomous Hamiltonian system with two degrees of freedom. The problem of the orbital stability of pendulum-like oscillations of a heavy rigid body with a fixed point in the Bobylev – Steklov case is discussed as an application. The nonlinear analysis of orbital stability is carried out including terms through degree six in the expansion of the Hamiltonian function in a neighborhood of the unperturbed periodic motion. This makes it possible to draw rigorous conclusions on orbital stability for the parameter values corresponding to degeneracy of terms of degree four in the normal form of the Hamiltonian function of equations of perturbed motion.
Keywords: rigid body, orbital stability, Hamiltonian system, local coordinates, normal form.
Mots-clés : rotations, oscillations
@article{ND_2020_16_4_a3,
     author = {B. S. Bardin},
     title = {On a {Method} of {Introducing} {Local} {Coordinates} in the {Problem} of the {Orbital} {Stability} of {Planar} {Periodic} {Motions} of a {Rigid} {Body}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {581--594},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2020_16_4_a3/}
}
TY  - JOUR
AU  - B. S. Bardin
TI  - On a Method of Introducing Local Coordinates in the Problem of the Orbital Stability of Planar Periodic Motions of a Rigid Body
JO  - Russian journal of nonlinear dynamics
PY  - 2020
SP  - 581
EP  - 594
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2020_16_4_a3/
LA  - ru
ID  - ND_2020_16_4_a3
ER  - 
%0 Journal Article
%A B. S. Bardin
%T On a Method of Introducing Local Coordinates in the Problem of the Orbital Stability of Planar Periodic Motions of a Rigid Body
%J Russian journal of nonlinear dynamics
%D 2020
%P 581-594
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2020_16_4_a3/
%G ru
%F ND_2020_16_4_a3
B. S. Bardin. On a Method of Introducing Local Coordinates in the Problem of the Orbital Stability of Planar Periodic Motions of a Rigid Body. Russian journal of nonlinear dynamics, Tome 16 (2020) no. 4, pp. 581-594. http://geodesic.mathdoc.fr/item/ND_2020_16_4_a3/

[1] Birkhoff, G. D., Dynamical Systems, AMS, Providence, RI, 1966, 305 pp. | MR | Zbl

[2] Giacaglia, G. E. O., Perturbation Methoda in Non-Linear Systems, Appl. Math. Sci., 8, Springer, New York, 1972, ix, 369 pp. | DOI | MR

[3] Markeev, A. P., Libration Points in Celestial Mechanics and Space Dynamics, Nauka, Moscow, 1978, 312 pp. (Russian)

[4] Siegel, C. and Moser, J., Lectures on Celestial Mechanics, Grundlehren Math. Wiss., 187, Springer, New York, 1971, xii+290 pp. | DOI | MR | Zbl

[5] Uspekhi Mat. Nauk, 18:6(114) (1963), 91–192 (Russian) | DOI | MR | Zbl

[6] Kosmicheskie Issledovaniya, 13:3 (1975), 322–336 (Russian) | MR

[7] Markeev, A. P. and Bardin, B. S., “On the Stability of Planar Oscillations and Rotations of a Satellite in a Circular Orbit”, Celest. Mech. Dynam. Astronom., 85:1 (2003), 51–66 | DOI | MR | Zbl

[8] Prikl. Mat. Mekh., 65:1 (2001), 51–58 (Russian) | DOI | MR | Zbl

[9] Bardin, B. S., Rudenko, T. V., and Savin, A. A., “On the Orbital Stability of Planar Periodic Motions of a Rigid Body in the Bobylev – Steklov Case”, Regul. Cahotic Dyn., 17:6 (2012), 533–546 | DOI | MR | Zbl

[10] Bardin, B. S., “On the Orbital Stability of Pendulum-Like Motions of a Rigid Body in the Bobylev – Steklov Case”, Regul. Chaotic Dyn., 15:6 (2010), 702–714 | DOI | MR

[11] Bardin, B. S. and Savin, A. A., “On the Orbital Stability of Pendulum-Like Oscillations and Rotations of a Symmetric Rigid Body with a Fixed Point”, Regul. Chaotic Dyn., 17:3–4 (2012), 243–257 | DOI | MR | Zbl

[12] Prikl. Mat. Mekh., 77:6 (2013), 806–821 (Russian) | DOI | MR | Zbl

[13] Prikl. Mat. Mekh., 66:6 (2002), 929–938 (Russian) | DOI | MR

[14] Uspekhi Mat. Nauk, 65:2 (2010), 71–132 (Russian) | DOI | DOI | MR | Zbl

[15] Bobylev, D. N., “On a Particular Solution of the Differential Equations of a Heavy Rigid Body Rotation around of a Fixed Point”, Tr. Otdel. Fiz. Nauk Obsch. Lyubit. Estestvozn., 8:2 (1896), 21–25 (Russian)

[16] Steklov, V. A., “A Certain Case of Motion of Heavy Rigid Body Having Fixed Point”, Tr. Otdel. Fiz. Nauk Obsch. Lubit. Estestvozn., 8:1 (1896), 19–21 (Russian)

[17] Borisov, A. V. and Mamaev, I. S., Rigid Body Dynamics, R Dynamics, Institute of Computer Science, Moscow – Izhevsk, 2001 (Russian) | MR

[18] Gradshtein, I. S. and Ryzhik, I. M., Table of Integrals, Series, and Products, 7th ed., Acad. Press, Amsterdam, 2007, 1200 pp. | MR | Zbl