Phase Transition to Quadrupolar Vortices in a Spherical Model of the Energy-Enstrophy Theory — Exact Solution
Russian journal of nonlinear dynamics, Tome 16 (2020) no. 4, pp. 543-555.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new energy-enstrophy model for the equilibrium statistical mechanics of barotropic flow on a sphere is introduced and solved exactly for phase transitions to quadrupolar vortices when the kinetic energy level is high. Unlike the Kraichnan theory, which is a Gaussian model, we substitute a microcanonical enstrophy constraint for the usual canonical one, a step which is based on sound physical principles. This yields a spherical model with zero total circulation, a microcanonical enstrophy constraint and a canonical constraint on energy, with angular momentum fixed to zero. A closed-form solution of this spherical model, obtained by the Kac – Berlin method of steepest descent, provides critical temperatures and amplitudes of the symmetry-breaking quadrupolar vortices. This model and its results differ from previous solvable models for related phenomena in the sense that they are not based on a mean-field assumption.
Keywords: energy-enstrophy theory, long-range spherical model, rotating atmospheres.
Mots-clés : phase transition
@article{ND_2020_16_4_a1,
     author = {C. C. Lim},
     title = {Phase {Transition} to {Quadrupolar} {Vortices} in a {Spherical} {Model} of the {Energy-Enstrophy} {Theory} {\textemdash} {Exact} {Solution}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {543--555},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2020_16_4_a1/}
}
TY  - JOUR
AU  - C. C. Lim
TI  - Phase Transition to Quadrupolar Vortices in a Spherical Model of the Energy-Enstrophy Theory — Exact Solution
JO  - Russian journal of nonlinear dynamics
PY  - 2020
SP  - 543
EP  - 555
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2020_16_4_a1/
LA  - ru
ID  - ND_2020_16_4_a1
ER  - 
%0 Journal Article
%A C. C. Lim
%T Phase Transition to Quadrupolar Vortices in a Spherical Model of the Energy-Enstrophy Theory — Exact Solution
%J Russian journal of nonlinear dynamics
%D 2020
%P 543-555
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2020_16_4_a1/
%G ru
%F ND_2020_16_4_a1
C. C. Lim. Phase Transition to Quadrupolar Vortices in a Spherical Model of the Energy-Enstrophy Theory — Exact Solution. Russian journal of nonlinear dynamics, Tome 16 (2020) no. 4, pp. 543-555. http://geodesic.mathdoc.fr/item/ND_2020_16_4_a1/

[1] Frederiksen, J. S. and Sawford, B. L., “Statistical Dynamics of Two-Dimensional Inviscid Flow on a Sphere”, J. Atmos. Sci., 37:4 (1980), 717–732 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR

[2] Cho, J. Y.-K. and Polvani, L. M., “The Emergence of Jets and Vortices in Freely Evolving, Shallow-Water Turbulence on a Sphere”, Phys. Fluids, 8:6 (1996), 1531–1552 | DOI | Zbl

[3] Cho, J. Y.-K. and Polvani, L. M., “The Morphogenesis of Bands and Zonal Winds in the Atmospheres on the Giant Outer Planets”, Science, 273:5273 (1996), 335–337 | DOI

[4] Kim, D. and Thompson, C. J., “Critical Behaviour of a Modified Spherical Model”, J. Phys. A, 10:7 (1977), 1167–1174 | DOI | MR

[5] Naso, A., Chavanis, P. H., and Dubrulle, B., “Statistical Mechanics of Two-Dimensional Euler Flows and Minimum Enstrophy States”, Eur. Phys. J. B, 77:2 (2010), 187–212 | DOI | MR

[6] Herbert, C., Dubrulle, B., Chavanis, P. H., and Paillard, D., “Phase Transitions and Marginal Ensemble Equivalence for Freely Evolving Flows on a Rotating Sphere”, Phys. Rev. E, 85:5 (2012), 056304, 7 pp. | DOI

[7] Chavanis, P. H., “Dynamical and Thermodynamical Stability of Two-Dimensional Flows: Variational Principles and Relaxation Equations”, Eur. Phys. J. B, 70 (2009), 73–105 | DOI | MR | Zbl

[8] Kraichnan, R., “Statistical Dynamics of Two-Dimensional Flows”, J. Fluid Mech., 67:1 (1975), 155–175 | DOI | Zbl

[9] Lim, C. C., “Energy Maximizers, Negative Temperatures, and Robust Symmetry Breaking in Vortex Dynamics on a Nonrotating Sphere”, SIAM J. Appl. Math., 65:6 (2005), 2093–2106 | DOI | MR | Zbl

[10] Lim, C. C., “Energy Extremals and Nonlinear Stability in an Energy-Relative Enstrophy Theory of the Coupled Barotropic Fluid: Rotating Sphere System”, J. Math. Phys., 48:6 (2007), 065603 | DOI | MR | Zbl

[11] Lim, C. C., “Coherent Structures in an Energy-Enstrophy Theory for Axisymmetric Flows”, Phys. Fluids, 15:2 (2003), 478–487 | DOI | MR

[12] Ding, X. and Lim, C. C., “Phase Transitions of the Energy-Relative Enstrophy Theory for a Coupled Barotropic Fluid–Rotating Sphere System”, Phys. A, 374:1 (2006), 152–164 | DOI | MR

[13] Lim, C. C. and Singh Mavi, R., “Phase Transitions for Barotropic Flows on a Sphere: Bragg Method”, Phys. A, 380 (2007), 43–60 | DOI

[14] Lim, C. C. and Nebus, J., “The Spherical Model of Logarithmic Potentials As Examined by Monte Carlo Methods”, Phys. Fluids, 16:10 (2004), 4020–4027 | DOI | MR

[15] Leith, C. E., “Minimum Enstrophy Vortices”, Phys. Fluids, 27:6 (1984), 1388–1395 | DOI | MR | Zbl

[16] Onsager, L., “Statistical Hydrodynamics”, Nuovo Cimento (9), 6, Supplemento:2 (Convegno Internazionale di Meccanica Statistica) (1949), 279–287 | DOI | MR

[17] Berlin, T. H. and Kac, M., “The Spherical Model of a Ferromagnet”, Phys. Rev. (2), 86 (1952), 821–835 | DOI | MR | Zbl

[18] Carnevale, G. and Frederiksen, J., “Nonlinear Stability and Statistical Mechanics of Flow over Topography”, J. Fluid Mech., 175 (1987), 157–181 | DOI | Zbl

[19] Lim, C. C. and Nebus, J., Vorticity, Statistical Mechanics, and Monte Carlo Simulation, Springer, New York, 2007 | MR | Zbl

[20] Lim, C. C., Ding, X., and Nebus, J., Vortex Dynamics, Statistical Mechanics, and Planetary Atmospheres, World Sci., Hackensack, N.J., 2009, xii+211 pp. | MR | Zbl

[21] Lim, C. C., “Phase Transition to Super-Rotating Atmospheres in a Simple Planetary Model for a Nonrotating Massive Planet: Exact Solution”, Phys. Rev. E, 86:6 (2012), 066304, 9 pp. | DOI

[22] Lim, C. C., “A Long Range Spherical Model and Exact Solutions for an Energy Enstrophy Theory for Two-Dimensional Turbulence”, Phys. Fluids, 13:7 (2001), 1961–1973 | DOI | MR

[23] Lim, C. C. and Assad, S. M., “Self Containment Radius for Rotating Planar Flows, Single-Signed Vortex Gas and Electron Plasma”, Regul. Chaotic Dyn., 10:3 (2005), 239–255 | DOI | MR | Zbl

[24] Lim, C. C., “Extremal Free Energy in a Simple Mean Field Theory for a Coupled Barotropic Fluid: Rotating Sphere System”, Discrete Contin. Dyn. Syst. Ser. A, 19:2 (2007), 361–386 | DOI | MR | Zbl

[25] Miller, J., “Statistical Mechanics of Euler Equations in Two Dimensions”, Phys. Rev. Lett., 65:17 (1990), 2137–2140 | DOI | MR | Zbl

[26] Robert, R. and Sommeria, J., “Statistical Equilibrium States for Two-Dimensional Flows”, J. Fluid Mech., 229 (1991), 291–310 | DOI | MR | Zbl

[27] Sommeria, J., “Experimental Study of the 2D Inverse Energy Cascade in a Square Box”, J. Fluid Mech., 170 (1986), 139–168 | DOI

[28] van Heijst, G., Clercx, H., and Molenaar, D., “The Effects of Solid Boundaries on Confined Two-Dimensional Turbulence”, J. Fluid Mech., 554 (2006), 411–431 | DOI | MR | Zbl

[29] Lundgren, T. S. and Pointin, Y.B., “Statistical Mechanics of Two-Dimensional Vortices”, J. Stat Phys., 17 (1977), 323–355 | DOI

[30] Majda, A. and Wang, X., Nonlinear Dynamics and Statistical Theories for Basic Geophysical Flows, Cambridge Univ. Press, Cambridge, 2006, 564 pp. | MR | Zbl

[31] Touchette, H., Ellis, R. S., and Turkington, B., “An Introduction to the Thermodynamic and Macrostate Levels of Nonequivalent Ensembles: News and Expectations in Thermostatistics”, Phys. A, 340:1–3 (2004), 138–146 | DOI | MR

[32] Bouchet, F., “Simpler Variational Problems for Statistical Equilibria of the 2D Euler Equation and Other Systems with Long Range Interactions”, Phys. D, 237:14–17 (2008), 1976–1981 | DOI | MR | Zbl

[33] Bouchet, F. and Venaille, A., “Statistical Mechanics of Two-Dimensional and Geophysical Flows”, Phys. Rep., 515:5 (2012), 227–295 | DOI | MR

[34] Schubert, G., Bougher, S. W., Covey, C. C., Del Genio, A. D., Grossman, A. S., Hollingsworth, J. L., Limaye, S. S., and Young, R. E., “Venus Atmosphere Dynamics: A Continuing Enigma”, Exploring Venus As a Terrestrial Planet, eds. L. Esposito, E. Stofan, T. Cravens, American Geo. Union, Washington, D.C., 2007, 101–120 | DOI

[35] Lim, C. C. and Majda, A., “A Coupled Quasi-Geostrophic Surface Temperature, Potential Vorticiy Model for Open Ocean Convection”, Geophys. Astrophys. Fluid Dyn., 94:3–4 (2001), 177–220 | DOI | MR

[36] Ding, X. and Lim, C. C., “First-Order Phase Transitions High Energy Coherent Spots in a Shallow Water Model on a Rapidly Rotating Sphere”, Phys. Fluids, 21:4 (2009), 045102 | DOI | Zbl