Another Special Case of Vibrations of a Rolling Tire
Russian journal of nonlinear dynamics, Tome 16 (2020) no. 4, pp. 531-542.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate a special case of vibrations of a loaded tire rolling at constant speed. A previously proposed analytical model of a radial tire is considered. The surface of the tire is a flexible tread combined with elastic sidewalls. In the undeformed state, the tread is a circular cylinder. The tread is reinforced with inextensible cords. The tread is the part of the tire that makes actual contact with the ground plane. In the undeformed state, the sidewalls are represented by parts of two tori and consist of incompressible rubber described by the Mooney –Rivlin model. The previously obtained partial differential equation which describes the tire radial in-plane vibrations about steady-state regime of rolling is investigated. Analyzing the discriminant of the quartic polynomial, which is the function of the frequency of the tenth degree and the function of the angular velocity of the sixth degree, the rare case of a root of multiplicity three is discovered. The angular velocity of rotation, the tire speed and the natural frequency, corresponding to this case, are determined analytically. The mode shape of vibration in the neighborhood of the singular point is determined analytically.
Mots-clés : radial tire, vibrations
Keywords: analytical model, rolling, modal analysis, multiple roots.
@article{ND_2020_16_4_a0,
     author = {I. F. Kozhevnikov},
     title = {Another {Special} {Case} of {Vibrations} of a {Rolling} {Tire}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {531--542},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2020_16_4_a0/}
}
TY  - JOUR
AU  - I. F. Kozhevnikov
TI  - Another Special Case of Vibrations of a Rolling Tire
JO  - Russian journal of nonlinear dynamics
PY  - 2020
SP  - 531
EP  - 542
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2020_16_4_a0/
LA  - ru
ID  - ND_2020_16_4_a0
ER  - 
%0 Journal Article
%A I. F. Kozhevnikov
%T Another Special Case of Vibrations of a Rolling Tire
%J Russian journal of nonlinear dynamics
%D 2020
%P 531-542
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2020_16_4_a0/
%G ru
%F ND_2020_16_4_a0
I. F. Kozhevnikov. Another Special Case of Vibrations of a Rolling Tire. Russian journal of nonlinear dynamics, Tome 16 (2020) no. 4, pp. 531-542. http://geodesic.mathdoc.fr/item/ND_2020_16_4_a0/

[1] Bryan, G. H., “On the Beats in the Vibrations of a Revolving Cylinder or Bell”, Math. Proc. Cambridge Philos. Soc., 7, pt. 3 (1890), 101–111

[2] Lamb, H., Higher Mechanics, 2nd ed., Cambridge Univ. Press, Cambridge, 2009 | Zbl

[3] Chiesa, A., Oberto, L., and Tamburini, L., “Transmission of Tyre Vibrations”, Automobile Engineer, 54:13 (1964), 520–530

[4] Tielking, J. T., Plane Vibration Characteristics of a Pneumatic Tire Model, SAE Technical Paper 650492, 1965, 7 pp.

[5] Potts, G. R., “Application of Holography to the Study of Tire Vibration”, Tire Sci. Technol., 1:3 (1973), 255–266 | DOI

[6] Böhm, F., “Mechanik des Gürtelreifens”, Ingenieur-Archiv, 35:2 (1966), 82–101 | DOI

[7] Zhuravlev, V. F. and Klimov, D. M., “Dynamic Effects in an Elastic Rotating Ring”, Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela, 1983, no. 5, 17–23 (Russian)

[8] Egarmin, N. E., “Precession of Vibrational Standing Waves of a Rotating Axisymmetric Shell”, Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela, 21:1 (1986), 142–148 (Russian)

[9] Vil'ke, V. G., Analytical Mechanics of Systems with an Infinite Number of Degrees of Freedom: In 2 Vols., Mosk. Gos. Univ., Moscow, 1997, 376 pp. (Russian)

[10] Endo, M., Hatamura, K., Sakata, M., and Taniguchi, O., “Flexural Vibration of a Thin Rotating Ring”, J. Sound Vibration, 92:2 (1984), 261–272 | DOI | MR

[11] Kim, W. and Chung, J., “Free Non-Linear Vibration of a Rotating Thin Ring with the In-Plane and Out-of-Plane Motions”, J. Sound Vibration, 258:1 (2002), 167–178 | DOI

[12] Matsubara, M., Tajiri, D., Ise, T., and Kawamura, S., “Vibrational Response Analysis of Tires Using a Three-Dimensional Flexible Ring-Based Model”, J. Sound Vibration, 408 (2017), 368–382 | DOI | MR

[13] Krylov, V. V. and Gilbert, O., “On the Theory of Standing Waves in Tyres at High Vehicle Speeds”, J. Sound Vibration, 329 (2010), 4398–4408 | DOI

[14] Zegelaar, P. W. A., “Modal Analysis of Tire In-Plane Vibrations”, SAE Internat. Congress and Exposition, SAE Technical Paper 971101 (Detroit, USA, 1997), 14 pp. | Zbl

[15] Kindt, P., Sas, P., and Desmet, W., “Measurement and Analysis of Rolling Tire Vibrations”, Opt. Laser Eng., 47:3–4 (2009), 443–453 | DOI

[16] Gonzalez Diaz, C., Kindt, P., Middelberg, J., Vercammen, S., Thiry, Ch., Close, R., and Leyssens, J., “Dynamic Behaviour of a Rolling Tyre: Experimental and Numerical Analyses”, J. Sound Vibration, 364 (2016), 147–164 | DOI

[17] Lopez, I., van Doorn, R. R. J. J., van der Steen, R., Roozen, N. B., and Nijmeijer, H., “Frequency Loci Veering due to Deformation in Rotating Tyres”, J. Sound Vibration, 324:3–5 (2009), 622–639 | DOI

[18] Nackenhorst, U., “Finite Element Analysis of Tires in Rolling Contact”, GAMM-Mitteilungen, 37:1 (2014), 27–65 | DOI | MR | Zbl

[19] Brinkmeier, M. and Nackenhorst, U., “An Approach for Large-Scale Gyroscopic Eigenvalue Problems with Application to High-Frequency Response of Rolling Tires”, Comput. Mech., 41:4 (2008), 503–515 | DOI | Zbl

[20] Vestn. Mosk. Univ. Ser. 1. Mat. Mekh., 2004, no. 4, 37–45 (Russian) | MR | Zbl

[21] Prikl. Mat. Mekh., 70:2 (2006), 250–256 (Russian) | DOI | MR | Zbl

[22] Kozhevnikov, I. F., “Vibrations of a Rolling Tyre”, J. Sound Vibration, 331:7 (2012), 1669–1685 | DOI

[23] Kozhevnikov, I. F., “A Special Case of Rolling Tire Vibrations”, Russian J. Nonlinear Dyn., 15:1 (2019), 67–78 | MR | Zbl

[24] Oden, J. T., Finite Elements of Nonlinear Continua, McGraw-Hill, New York, 1971, 432 pp.