Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2020_16_4_a0, author = {I. F. Kozhevnikov}, title = {Another {Special} {Case} of {Vibrations} of a {Rolling} {Tire}}, journal = {Russian journal of nonlinear dynamics}, pages = {531--542}, publisher = {mathdoc}, volume = {16}, number = {4}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2020_16_4_a0/} }
I. F. Kozhevnikov. Another Special Case of Vibrations of a Rolling Tire. Russian journal of nonlinear dynamics, Tome 16 (2020) no. 4, pp. 531-542. http://geodesic.mathdoc.fr/item/ND_2020_16_4_a0/
[1] Bryan, G. H., “On the Beats in the Vibrations of a Revolving Cylinder or Bell”, Math. Proc. Cambridge Philos. Soc., 7, pt. 3 (1890), 101–111
[2] Lamb, H., Higher Mechanics, 2nd ed., Cambridge Univ. Press, Cambridge, 2009 | Zbl
[3] Chiesa, A., Oberto, L., and Tamburini, L., “Transmission of Tyre Vibrations”, Automobile Engineer, 54:13 (1964), 520–530
[4] Tielking, J. T., Plane Vibration Characteristics of a Pneumatic Tire Model, SAE Technical Paper 650492, 1965, 7 pp.
[5] Potts, G. R., “Application of Holography to the Study of Tire Vibration”, Tire Sci. Technol., 1:3 (1973), 255–266 | DOI
[6] Böhm, F., “Mechanik des Gürtelreifens”, Ingenieur-Archiv, 35:2 (1966), 82–101 | DOI
[7] Zhuravlev, V. F. and Klimov, D. M., “Dynamic Effects in an Elastic Rotating Ring”, Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela, 1983, no. 5, 17–23 (Russian)
[8] Egarmin, N. E., “Precession of Vibrational Standing Waves of a Rotating Axisymmetric Shell”, Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela, 21:1 (1986), 142–148 (Russian)
[9] Vil'ke, V. G., Analytical Mechanics of Systems with an Infinite Number of Degrees of Freedom: In 2 Vols., Mosk. Gos. Univ., Moscow, 1997, 376 pp. (Russian)
[10] Endo, M., Hatamura, K., Sakata, M., and Taniguchi, O., “Flexural Vibration of a Thin Rotating Ring”, J. Sound Vibration, 92:2 (1984), 261–272 | DOI | MR
[11] Kim, W. and Chung, J., “Free Non-Linear Vibration of a Rotating Thin Ring with the In-Plane and Out-of-Plane Motions”, J. Sound Vibration, 258:1 (2002), 167–178 | DOI
[12] Matsubara, M., Tajiri, D., Ise, T., and Kawamura, S., “Vibrational Response Analysis of Tires Using a Three-Dimensional Flexible Ring-Based Model”, J. Sound Vibration, 408 (2017), 368–382 | DOI | MR
[13] Krylov, V. V. and Gilbert, O., “On the Theory of Standing Waves in Tyres at High Vehicle Speeds”, J. Sound Vibration, 329 (2010), 4398–4408 | DOI
[14] Zegelaar, P. W. A., “Modal Analysis of Tire In-Plane Vibrations”, SAE Internat. Congress and Exposition, SAE Technical Paper 971101 (Detroit, USA, 1997), 14 pp. | Zbl
[15] Kindt, P., Sas, P., and Desmet, W., “Measurement and Analysis of Rolling Tire Vibrations”, Opt. Laser Eng., 47:3–4 (2009), 443–453 | DOI
[16] Gonzalez Diaz, C., Kindt, P., Middelberg, J., Vercammen, S., Thiry, Ch., Close, R., and Leyssens, J., “Dynamic Behaviour of a Rolling Tyre: Experimental and Numerical Analyses”, J. Sound Vibration, 364 (2016), 147–164 | DOI
[17] Lopez, I., van Doorn, R. R. J. J., van der Steen, R., Roozen, N. B., and Nijmeijer, H., “Frequency Loci Veering due to Deformation in Rotating Tyres”, J. Sound Vibration, 324:3–5 (2009), 622–639 | DOI
[18] Nackenhorst, U., “Finite Element Analysis of Tires in Rolling Contact”, GAMM-Mitteilungen, 37:1 (2014), 27–65 | DOI | MR | Zbl
[19] Brinkmeier, M. and Nackenhorst, U., “An Approach for Large-Scale Gyroscopic Eigenvalue Problems with Application to High-Frequency Response of Rolling Tires”, Comput. Mech., 41:4 (2008), 503–515 | DOI | Zbl
[20] Vestn. Mosk. Univ. Ser. 1. Mat. Mekh., 2004, no. 4, 37–45 (Russian) | MR | Zbl
[21] Prikl. Mat. Mekh., 70:2 (2006), 250–256 (Russian) | DOI | MR | Zbl
[22] Kozhevnikov, I. F., “Vibrations of a Rolling Tyre”, J. Sound Vibration, 331:7 (2012), 1669–1685 | DOI
[23] Kozhevnikov, I. F., “A Special Case of Rolling Tire Vibrations”, Russian J. Nonlinear Dyn., 15:1 (2019), 67–78 | MR | Zbl
[24] Oden, J. T., Finite Elements of Nonlinear Continua, McGraw-Hill, New York, 1971, 432 pp.