Estimates of Solutions During Motion
Russian journal of nonlinear dynamics, Tome 16 (2020) no. 3, pp. 517-525

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper presents secure upper and lower estimates for solutions to the equations of rigid body motion in the Euler case (in the absence of external torques). These estimates are expressed by simple formulae in terms of elementary functions and are used for solutions that are obtained in a neighborhood of the unstable steady rotation of the body about its middle axis of inertia. The estimates obtained are applied for a rigorous explanation of the flip-over phenomenon which arises in the experiment with Dzhanibekov’s nut.
Keywords: permanent (steady) rotation, middle axis of inertia, estimates of solutions to differential equations.
Mots-clés : Euler top
@article{ND_2020_16_3_a7,
     author = {V. F. Zhuravlev and G. M. Rozenblat},
     title = {Estimates of {Solutions} {During} {Motion}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {517--525},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2020_16_3_a7/}
}
TY  - JOUR
AU  - V. F. Zhuravlev
AU  - G. M. Rozenblat
TI  - Estimates of Solutions During Motion
JO  - Russian journal of nonlinear dynamics
PY  - 2020
SP  - 517
EP  - 525
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2020_16_3_a7/
LA  - en
ID  - ND_2020_16_3_a7
ER  - 
%0 Journal Article
%A V. F. Zhuravlev
%A G. M. Rozenblat
%T Estimates of Solutions During Motion
%J Russian journal of nonlinear dynamics
%D 2020
%P 517-525
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2020_16_3_a7/
%G en
%F ND_2020_16_3_a7
V. F. Zhuravlev; G. M. Rozenblat. Estimates of Solutions During Motion. Russian journal of nonlinear dynamics, Tome 16 (2020) no. 3, pp. 517-525. http://geodesic.mathdoc.fr/item/ND_2020_16_3_a7/