Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2020_16_3_a0, author = {A. S. Osipov}, title = {Inverse {Spectral} {Problems} for {Second-Order}}, journal = {Russian journal of nonlinear dynamics}, pages = {397--419}, publisher = {mathdoc}, volume = {16}, number = {3}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2020_16_3_a0/} }
A. S. Osipov. Inverse Spectral Problems for Second-Order. Russian journal of nonlinear dynamics, Tome 16 (2020) no. 3, pp. 397-419. http://geodesic.mathdoc.fr/item/ND_2020_16_3_a0/
[1] Kac, M. and van Moerbeke, P., “On an Explicitly Soluble System of Nonlinear Differential Equations Related to a Certain Toda Lattice”, Adv. Math., 16:2 (1975), 160–169 | DOI | MR | Zbl
[2] Moser, J., “Three Integrable Hamiltonian Systems Connected with Isospectral Deformations”, Adv. Math., 16:2 (1975), 197–220 | DOI | MR | Zbl
[3] Akhiezer, N. I., The Classical Moment Problem and Some Related Questions in Analysis, Oliver Boyd, Edinburgh, 1965, 253 pp. | MR | Zbl
[4] Akhiezer, N. I. and Glazman, I. M., Theory of Linear Operators in Hilbert Space, Dower, New York, 1993 | MR
[5] Babelon, O., “Continuum Limit of the Volterra Model, Separation of Variables and Non-Standard Realizations of the Virasoro Poisson Bracket”, Comm. Math. Phys., 266:3 (2006), 819–862 | DOI | MR | Zbl
[6] Berezanskii, Ju. M., Expansions in Eigenfunctions of Selfadjoint Operators, Transl. Math. Monogr., 17, AMS, Providence, R.I., 1968, ix+809 pp. | DOI | MR
[7] Berezanski, Yu. M., “The Integration of Semi-Infinite Toda Chain by Means of Inverse Spectral Problem”, Rep. Math. Phys., 24:1 (1986), 21–47 | DOI | MR
[8] Barrios Rolanía, D., Branquinho, A., and Foulquié Moreno, A., “Dynamics and Interpretation of Some Integrable Systems via Multiple Orthogonal Polynomials”, J. Math. Anal. Appl., 361:2 (2010), 358–370 | DOI | MR | Zbl
[9] Bogoyavlensky, O. I., Breaking Solitons. Nonlinear Integrable Equations, Nauka, Moscow, 1991, 320 pp. (Russian) | MR
[10] Damianou, P. A., “The Volterra Model and Its Relation to the Toda Lattice”, Phys. Lett. A, 155:2–3 (1991), 126–132 | DOI | MR
[11] Damianou, P. A. and Loja Fernandes, R., “From the Toda Lattice to the Volterra Lattice and Back”, Rep. Math. Phys., 50:3 (2002), 361–378 | DOI | MR | Zbl
[12] Osipov, A., “On Some Issues Related to the Moment Problem for the Band Matrices with Operator Elements”, J. Math. Anal. Appl., 275:2 (2002), 657–675 | DOI | MR | Zbl
[13] Osipov, A. S., “On a Determinant Criterion for the Weak Perfectness of Systems of Functions Holomorphic at Infinity and Their Connection with Some Classes of Higher-Order Difference Operators”, Fundam. Prikl. Mat., 1:3 (1995), 711–727 (Russian) | MR | Zbl
[14] Mat. Zametki, 56:6 (1994), 141–144 (Russian) | DOI | MR | Zbl
[15] Magri, F., “A Simple Model of the Integrable Hamiltonian Equation”, J. Math. Phys., 19:5 (1978), 1156–1162 | DOI | MR | Zbl
[16] Morosi, C. and Pizzocchero, L., “On the Continuous Limit of Integrable Lattices: 1. The Kac – Moerbeke System and KdV Theory”, Comm. Math. Phys., 180:2 (1996), 505–528 | DOI | MR | Zbl
[17] Yurko, V. A., “On Higher-Order Difference Operators”, J. Differ. Equations Appl., 1:4 (1995), 347–352 | DOI | MR | Zbl
[18] Gantmacher, F. R., The Theory of Matrices, v. 2, Chelsea, New York, 2000, 288 pp. | MR
[19] Gekhtman, M., “Hamiltonian Structure of Non-Abelian Toda Lattice”, Lett. Math. Phys., 46:3 (1998), 189–205 | DOI | MR | Zbl
[20] Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 150 (1986), 17–25, 218 (Russian) | DOI | MR | Zbl | Zbl