Development of a Mathematical Model and the Numerical Solution Method in a Combined Impact Scheme for MIF Target
Russian journal of nonlinear dynamics, Tome 16 (2020) no. 2, pp. 325-341.

Voir la notice de l'article provenant de la source Math-Net.Ru

This work is devoted to the theoretical calculation of the processes of compression and energy release in the target by a combined action of a system of pulsed jets and intense laser radiation using a magnetic inertial plasma confinement method. A mathematical model, a numerical method, and a computational algorithm are developed to describe plasma-physical processes occurring in various types of high-temperature installations with high density. The results of the calculation of the hybrid effect of intensive energy flows on a cylindrical target are presented. The main gas-dynamic and radiative parameters of the compressed target plasma are found.
Keywords: computer simulation, magnetized target, mathematical modeling, numerical algorithm.
@article{ND_2020_16_2_a6,
     author = {V. V. Kuzenov and S. V. Ryzhkov and A. V. Starostin},
     title = {Development of a {Mathematical} {Model} and the {Numerical} {Solution} {Method} in a {Combined} {Impact} {Scheme} for {MIF} {Target}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {325--341},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2020_16_2_a6/}
}
TY  - JOUR
AU  - V. V. Kuzenov
AU  - S. V. Ryzhkov
AU  - A. V. Starostin
TI  - Development of a Mathematical Model and the Numerical Solution Method in a Combined Impact Scheme for MIF Target
JO  - Russian journal of nonlinear dynamics
PY  - 2020
SP  - 325
EP  - 341
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2020_16_2_a6/
LA  - en
ID  - ND_2020_16_2_a6
ER  - 
%0 Journal Article
%A V. V. Kuzenov
%A S. V. Ryzhkov
%A A. V. Starostin
%T Development of a Mathematical Model and the Numerical Solution Method in a Combined Impact Scheme for MIF Target
%J Russian journal of nonlinear dynamics
%D 2020
%P 325-341
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2020_16_2_a6/
%G en
%F ND_2020_16_2_a6
V. V. Kuzenov; S. V. Ryzhkov; A. V. Starostin. Development of a Mathematical Model and the Numerical Solution Method in a Combined Impact Scheme for MIF Target. Russian journal of nonlinear dynamics, Tome 16 (2020) no. 2, pp. 325-341. http://geodesic.mathdoc.fr/item/ND_2020_16_2_a6/

[1] Hsu, S. C. and Thio, Y. C. F., “Physics Criteria for a Subscale Plasma Liner Experiment”, J. Fusion Energ., 37 (2018), 103–110

[2] Aleksandrov, V. V., Branitski, A. V., Gasilov, V. A., Grabovskiy, E. V., Gritsuk, A. N., Mitrofanov, K. N., Olkhovskaya, O. G., Sasorov, P. V., and Frolov, I. N., “Study of Interaction between Plasma Flows and the Magnetic Field at the Implosion of Nested Wire Arrays”, Plasma Phys. Control. Fusion, 61:3 (2019), 035009, 16 pp.

[3] Gomez, M. R., Slutz, S. A., Knapp, P. F., Hahn, K. D., Weis, M. R., Harding, E. C., Geissel, M., Fein, J. R., Glinsky, M. E., Hansen, S. B., Harvey-Thompson, A. J., Jennings, C. A., Smith, I. C., Woodbury, D., Ampleford, D. J., Awe, T. J., Chandler, G. A., Hess, M. H., Lamppa, D. C., Myers, C. E., Ruiz, C. L., Sefkow, A. B., Schwarz, J., Yager-Elorriaga, D. A., Jones, B., Porter, J. L., Peterson, K. J., Mcbride, R. D., Rochau, G. A., and Sinars, D. B., “Assessing Stagnation Conditions and Identifying Trends in Magnetized Liner Inertial Fusion”, IEEE Trans. Plasma Sci., 47:5 (2019), 2081–2101

[4] Chirkov, A. Yu., Ryzhkov, S. V., Bagryansky, P. A., and Anikeev, A. V., “Plasma Kinetics Models for Fusion Systems Based on the Axially-Symmetric Mirror Devices”, Fusion Sci. Technol., 59 (1T) (2011), 39–42

[5] Kuzenov, V. V. and Ryzhkov, S. V., “Calculation of Plasma Dynamic Parameters of the Magneto-Inertial Fusion Target with Combined Exposure”, Phys. Plasmas, 26:9 (2019), 092704

[6] Kuzenov, V. V., Ryzhkov, S. V., and Frolko, P. A., “Numerical Simulation of the Coaxial Magneto-Plasma Accelerator and Non-Axisymmetric Radio Frequency Discharge”, J. Phys. Conf. Ser., 830 (2017), 012049, 6 pp.

[7] Kuzenov, V. V. and Ryzhkov, S. V., “Numerical Simulation of the Effect of Laser Radiation on Matter in an External Magnetic Field”, J. Phys. Conf. Ser., 830 (2017), 012124, 7 pp.

[8] Braginskii, S. I., “Transport Processes in a Plasma”, Reviews in Plasma Physics, v. 1, ed. M. A. Leontovich, Consultants Bureau, New York, 1965, 205 | MR

[9] Kuzenov, V. V. and Ryzhkov, S. V., “Numerical Modeling of Laser Target Compression in an External Magnetic Field”, Math. Models Comput. Simul., 10:2 (2018), 255–264 | MR

[10] Fiz. Plazmy, 2 (1976), 883–897 (Russian)

[11] Surzhikov, S. T., “Computing System for Solving Radiative Gasdynamic Problems of Entry and Re-Entry Space Vehicles”, Proc. of the 1st Internat. Workshop on Radiation of High Temperature Gases in Atmospheric Entry (Lisbon, Portugal, Oct 2003), European Space Agency (Special Publication), 533, ed. B. Warmbein, ESA Publ. Div., Noordwijk, 2003, 111–118

[12] Kuzenov, V. V., Ryzhkov, S. V., and Shumaev, V. V., “Numerical Thermodynamic Analysis of Alloys for Plasma Electronics and Advanced Technologies”, Probl. Atom. Sci. Tech., 2015, no. 4(98), 53–56

[13] Kuzenov, V. V., Ryzhkov, S. V., and Shumaev, V. V., “Application of Thomas – Fermi Model to Evaluation of Thermodynamic Properties of Magnetized Plasma”, Probl. Atom. Sci. Tech., 2015, no. 1(95), 97–99

[14] Xu, Z. and Shu, C.-W., “Anti-Diffusive High Order WENO Schemes for Hamilton – Jacobi Equations”, Methods Appl. Anal., 12:2 (2005), 169–190 | MR | Zbl

[15] Special Functions Handbook, eds. M. Abramovits, I. Stigan, Nauka, Moscow, 1979, 832 pp. (Russian)

[16] Lavrentiev, M. A. and Shabat, B. V., Methods of the Theory of Function of Complex Variable, Nauka, Moscow, 1987, 544 pp. (Russian) | MR

[17] Zh. Vychisl. Mat. Mat. Fiz., 49:10 (2009), 1844–1852 (Russian) | MR | Zbl

[18] Vorozhtsov, E. V., “Application of Lagrange – Burmann Expansions for the Numerical Integration of the Inviscid Gas Equations”, Vychisl. Metody Programm., 12:3 (2011), 348–361 (Russian)

[19] Fabrikant, N. Ya., Aerodynamics: The General Course, Nauka, Moscow, 1964, 815 pp. (Russian)

[20] Cardona, R. and Miranda, E., “On the Volume Elements of a Manifold with Transverse Zeroes”, Regul. Chaotic Dyn., 24:2 (2019), 187–197 | MR | Zbl

[21] Kudryashov, N. A. and Sinelshchikov, D. I., “Special Solutions of a High-Order Equation for Waves in a Liquid with Gas Bubbles”, Regul. Chaotic Dyn., 19:5 (2014), 576–585 | MR | Zbl

[22] Ovsyannikov, L. V., Lectures on the Basics of Gas Dynamics, Nauka, Moscow, 1981, 336 pp. (Russian) | MR

[23] Kvantovaya Elektronika, 39:6 (2009), 531–536 (Russian)

[24] Zeldovich, Ya. B. and Raizer, Yu. P., Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Dover, 2002, 944 pp.

[25] Ryzhkov, S. V. and Kuzenov, V. V., “Analysis of the Ideal Gas Flow over Body of Basic Geometrical Shape”, Int. J. Heat Mass Transf., 132 (2019), 587–592

[26] Romadanov, I., Smolyakov, A., Raitses, Ye., Kaganovich, I., Tian, T., and Ryzhkov, S., “Structure of Nonlocal Gradient-Drift Instabilities in Hall $E \times B$ Discharges”, Phys. Plasmas, 23:12 (2016), 122111, 69 pp.

[27] Kuzenov, V. V. and Ryzhkov, S. V., “Radiation-Hydrodynamic Modeling of the Contact Boundary of the Plasma Target Placed in an External Magnetic Field”, Applied Physics, 2014, no. 3, 26–30 (Russian)