Mathematical Study of the Small Oscillations of a Pendulum Completely Filled with a Viscoelastic Fluid
Russian journal of nonlinear dynamics, Tome 16 (2020) no. 2, pp. 309-324.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the small oscillations of a pendulum completely filled by a viscoelastic fluid, restricting ourselves for the fluid to the simpler Oldroyd model. We establish the equations of motion of the system. Writing them in a suitable form, we obtain an existence and unicity theorem of the solution of the associated evolution problem by means of semigroup theory. Afterwards, we show the existence and symmetry of the spectrum and prove the stability of the system. We show the existence of two sets of positive real eigenvalues, of which the first has infinity, and the second a point of the real axis, as points of accumulation. Finally, we specify the location of the possible nonreal eigenvalues.
Keywords: viscoelastic fluid, small oscillations, variational-operatorial and spectral methods, semigroups.
@article{ND_2020_16_2_a5,
     author = {H. Essaouini and P. Capodanno},
     title = {Mathematical {Study} of the {Small} {Oscillations} of a {Pendulum} {Completely} {Filled} with a {Viscoelastic} {Fluid}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {309--324},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2020_16_2_a5/}
}
TY  - JOUR
AU  - H. Essaouini
AU  - P. Capodanno
TI  - Mathematical Study of the Small Oscillations of a Pendulum Completely Filled with a Viscoelastic Fluid
JO  - Russian journal of nonlinear dynamics
PY  - 2020
SP  - 309
EP  - 324
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2020_16_2_a5/
LA  - en
ID  - ND_2020_16_2_a5
ER  - 
%0 Journal Article
%A H. Essaouini
%A P. Capodanno
%T Mathematical Study of the Small Oscillations of a Pendulum Completely Filled with a Viscoelastic Fluid
%J Russian journal of nonlinear dynamics
%D 2020
%P 309-324
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2020_16_2_a5/
%G en
%F ND_2020_16_2_a5
H. Essaouini; P. Capodanno. Mathematical Study of the Small Oscillations of a Pendulum Completely Filled with a Viscoelastic Fluid. Russian journal of nonlinear dynamics, Tome 16 (2020) no. 2, pp. 309-324. http://geodesic.mathdoc.fr/item/ND_2020_16_2_a5/

[1] Essaouini, H., Elbahaoui, J., Elbakkali, L., and Capodanno, P., “Mathematical Analysis of the Small Oscillations of a Heavy Heterogeneous Viscous Liquid in an Open Immovable Container”, Eng. Math. Lett., 2014 (2014), 2, 17 pp.

[2] Essaouini, H., El Bakkali, L., and Capodanno, P., “Analysis of the Small Oscillations of a Heavy Viscous Liquid in a Rigid Container Closed by an Elastic Membrane”, Internat. J. Adv. Math., 2017:2 (2017), 25–32 | MR

[3] Essaouini, H., El Bakkali, L., and Capodanno, P., “Mathematical Study of the Small Oscillations of Two Nonmixing Fluids, the Lower Inviscid, the Upper Viscoelastic, in an Open Container”, J. Math. Fluid Mech., 19:4 (2017), 645–657 | MR | Zbl

[4] Kopachevsky, N. D. and Krein, S. G., Operator Approach to Linear Problems of Hydrodynamics, v. 1, Oper. Theory Adv. Appl., 128, Self-Adjoint Problems for an Ideal Fluid, Birkhäuser, Basel, 2001, xxiv+384 pp. | MR | Zbl

[5] Kopachevsky, N. D. and Krein, S. G., Operator Approach to Linear Problems of Hydrodynamics, v. 2, Oper. Theory Adv. Appl., 146, Nonself-Adjoint Problems for Viscous Fluids, Birkhäuser, Basel, 2003, xxiv+444 pp. | MR | Zbl

[6] Lions, J. L., Équations différentielles opérationnelles et problèmes aux limites, Grundlehren Math. Wiss., 111, Springer, Berlin, 1961, IX, 292 pp. | MR

[7] Sánchez Hubert, J. and Sanchez-Palencia, E., Vibration and Coupling of Continuous Systems: Asymptotic Methods, Springer, Berlin, 1989, XV, 421 pp. | MR | Zbl