Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2020_16_2_a1, author = {A. V. Bukh and V. S. Anishchenko}, title = {Features of the {Synchronization} of {Spiral} {Wave} {Structures} in {Interacting} {Lattices} of {Nonlocally} {Coupled} {Maps}}, journal = {Russian journal of nonlinear dynamics}, pages = {243--257}, publisher = {mathdoc}, volume = {16}, number = {2}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2020_16_2_a1/} }
TY - JOUR AU - A. V. Bukh AU - V. S. Anishchenko TI - Features of the Synchronization of Spiral Wave Structures in Interacting Lattices of Nonlocally Coupled Maps JO - Russian journal of nonlinear dynamics PY - 2020 SP - 243 EP - 257 VL - 16 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2020_16_2_a1/ LA - en ID - ND_2020_16_2_a1 ER -
%0 Journal Article %A A. V. Bukh %A V. S. Anishchenko %T Features of the Synchronization of Spiral Wave Structures in Interacting Lattices of Nonlocally Coupled Maps %J Russian journal of nonlinear dynamics %D 2020 %P 243-257 %V 16 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2020_16_2_a1/ %G en %F ND_2020_16_2_a1
A. V. Bukh; V. S. Anishchenko. Features of the Synchronization of Spiral Wave Structures in Interacting Lattices of Nonlocally Coupled Maps. Russian journal of nonlinear dynamics, Tome 16 (2020) no. 2, pp. 243-257. http://geodesic.mathdoc.fr/item/ND_2020_16_2_a1/
[1] Pecora, L. M., Sorrentino, F., Hagerstrom, A. M., Murphy, T. E., and Roy, R., “Cluster Synchronization and Isolated Desynchronization in Complex Networks with Symmetries”, Nat. Commun., 5 (2014), 4079, 23 pp.
[2] Afraimovich, V. S., Nekorkin, V. I., Osipov, G. V., and Shalfeev, V. D., Stability, Structures and Chaos in Nonlinear Synchronization Network, World Sci. Ser. Nonlinear Sci. Ser. A Monogr. Treatises, 6, World Sci., Singapore, 1994, xii+246 pp. | MR
[3] Nekorkin, V. I., Kazantsev, V. B., and Velarde, M. G., “Mutual Synchronization of Two Lattices of Bistable Elements”, Phys. Lett. A, 236:5–6 (1997), 505–512
[4] Nekorkin, V. I., Voronin, M. L., and Velarde, M. G., “Clusters in an Ensemble of Globally Coupled Bistable Oscillators”, Eur. Phys. J. B, 9:3 (1999), 533–543
[5] Belykh, V. N., Belykh, I. V., and Hasler, M., “Hierarchy and Stability of Partially Synchronous Oscillations of Diffusively Coupled Dynamical Systems”, Phys. Rev. E (3), 62:5, part A (2000), 6332–6345 | MR
[6] Belykh, V. N., Belykh, I. V., and Mosekilde, E., “Cluster Synchronization Modes in an Ensemble of Coupled Chaotic Oscillators”, Phys. Rev. E, 63:3 (2001), 036216, 4 pp. | MR
[7] Nekorkin, V. I., Kazantsev, V. B., and Velarde, M. G., “Synchronization in Two-Layer Bistable Coupled Map Lattices”, Phys. D, 151:1 (2001), 1–26 | Zbl
[8] Nekorkin, V. I. and Velarde, M. G., Synergetic Phenomena in Active Lattices: Patterns, Waves, Solitons, Chaos, Springer, Berlin, 2002, xviii+357 pp. | MR | Zbl
[9] Akopov, A., Astakhov, V., Vadivasova, T., Shabunin, A., and Kapitaniak, T., “Frequency Synchronization of Clusters in Coupled Extended Systems”, Phys. Lett. A, 334:2–3 (2005), 169–172 | Zbl
[10] Kuramoto, Y., “Reduction Methods Applied to Nonlocally Coupled Oscillator Systems”, Nonlinear Dynamics and Chaos: Where Do We Go from Here?, eds. J. Hogan et al., Chapman Hall/CRC, Boca Raton, Fla., 2002, 209–227 | MR
[11] Kuramoto, Y. and Battogtokh, D., “Coexistence of Coherence and Incoherence in Nonlocally Coupled Phase Oscillators”, Nonlinear Phenom. Complex Syst., 5:4 (2002), 380–385
[12] Abrams, D. M. and Strogatz, S. H., “Chimera States for Coupled Oscillators”, Phys. Rev. Lett., 93:17 (2004), 174102, 4 pp.
[13] Panaggio, M. J. and Abrams, D. M., “Chimera States: Coexistence of Coherence and Incoherence in Networks of Coupled Oscillators”, Nonlinearity, 28:3 (2015), R67–R87 | MR | Zbl
[14] De Domenico, M., Solé-Ribalta, A., Cozzo, E., Kivelä, M., Moreno, Y., Porter, M. A., Gómez, S., and Arenas, A., “Mathematical Formulation of Multilayer Networks”, Phys. Rev. X, 3:4 (2013), 041022, 15 pp.
[15] Kivelä, M., Arenas, A., Barthelemy, M., Gleeson, J. P., Moreno, Y., and Porter, M. A., “Multilayer Networks”, J. Complex Netw., 2:3 (2014), 203–271
[16] Boccaletti, S., Bianconi, G., Criado, R., del Genio, C. I., Gómez-Gardeñes, J., Romance, M., Sendiña-Nadal, I., Wang, Z., and Zanin, M., “The Structure and Dynamics of Multilayer Networks”, Phys. Rep., 544:1 (2014), 1–122 | MR
[17] Gambuzza, L. V., Frasca, M., and Gómez-Gardeñes, J., “Intra-Layer Synchronization in Multiplex Networks”, Europhys. Lett., 110:2 (2015), 20010, 6 pp.
[18] Ghosh, S., Kumar, A., Zakharova, A., and Jalan, S., “Birth and Death of Chimera: Interplay of Delay and Multiplexing”, Europhys. Lett., 115:6 (2016), 60005, 7 pp. | MR
[19] Sevilla-Escoboza, R., Sendiña-Nadal, I., Leyva, I., Gutiérrez, R., Buldú, J. M., and Boccaletti, S., “Inter-Layer Synchronization in Multiplex Networks of Identical Layers”, Chaos, 26:6 (2016), 065304, 6 pp. | MR | Zbl
[20] Ghosh, S. and Jalan, S., “Emergence of Chimera in Multiplex Network”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 26:7 (2016), 1650120, 10 pp. | MR | Zbl
[21] Maksimenko, V. A., Makarov, V. V., Bera, B. K., Ghosh, D., Dana, S. K., Goremyko, M. V., Frolov, N. S., Koronovskii, A. A., and Hramov, A. E., “Excitation and Suppression of Chimera States by Multiplexing”, Phys. Rev. E, 94:5 (2016), 052205, 9 pp.
[22] Mikhaylenko, M., Ramlow, L., Jalan, S., and Zakharova, A., “Weak Multiplexing in Neural Networks: Switching between Chimera and Solitary States”, Chaos, 29:2 (2019), 023122, 10 pp. | MR | Zbl
[23] Andrzejak, R. G., Ruzzene, G., and Malvestio, I., “Generalized Synchronization between Chimera States”, Chaos, 27:5 (2017), 053114, 6 pp. | MR | Zbl
[24] Singh, A., Ghosh, S., Jalan, S., and Kurths, J., “Synchronization in Delayed Multiplex Networks”, Europhys. Lett., 111:3 (2015), 30010, 6 pp.
[25] Boccaletti, S., Almendral, J. A., Guan, S., Leyva, I., Liu, Z., Sendiña-Nadal, I., Wang, Z., and Zou, Y., “Explosive Transitions in Complex Networks-Structure and Dynamics: Percolation and Synchronization”, Phys. Rep., 660 (2016), 1–94 | MR | Zbl
[26] Bukh, A., Rybalova, E., Semenova, N., Strelkova, G., and Anishchenko, V., “New Type of Chimera and Mutual Synchronization of Spatiotemporal Structures in Two Coupled Ensembles of Nonlocally Interacting Chaotic Maps”, Chaos, 27:11 (2017), 111102, 7 pp. | MR | Zbl
[27] Bukh, A. V., Strelkova, G. I., and Anishchenko, V. S., “Synchronization of Chimera States in Coupled Networks of Nonlinear Chaotic Oscillators”, Rus. J. Nonlin. Dyn., 14:4 (2018), 419–433 | MR
[28] Strelkova, G. I., Vadivasova, T. E., and Anishchenko, V. S., “Synchronization of Chimera States in a Network of Many Unidirectionally Coupled Layers of Discrete Maps”, Regul. Chaotic Dyn., 23:7–8 (2018), 948–960 | MR | Zbl
[29] Rybalova, E. V., Vadivasova, T. E., Strelkova, G. I., Anishchenko, V. S. and Zakharova, A. S., “Forced Synchronization of a Multilayer Heterogeneous Network of Chaotic Maps in the Chimera State Mode”, Chaos, 29:3 (2019), 033134, 9 pp. | MR | Zbl
[30] Leyva, I., Sevilla-Escoboza, R., Sendiña-Nadal, I., Gutiérrez, R., Buldú, J. M. and Boccaletti, S., “Inter-Layer Synchronization in Non-Identical Multi-Layer Networks”, Sci. Rep., 7 (2017), 45475, 9 pp.
[31] Sawicki, J., Omelchenko, I., Zakharova, A., and Schöll, E., “Delay Controls Chimera Relay Synchronization in Multiplex Networks”, Phys. Rev. E, 98:6 (2018), 062224, 9 pp. | MR
[32] Zhang, X., Boccaletti, S., Guan, S., and Liu, Z., “Explosive Synchronization in Adaptive and Multilayer Networks”, Phys. Rev. Lett., 114:3 (2015), 038701, 5 pp.
[33] Leyva, I., Sendiña-Nadal, I., Sevilla-Escoboza, R., Vera-Avila, V. P., Chholak, P., and Boccaletti, S., “Relay Synchronization in Multiplex Networks”, Sci. Rep., 8:1 (2018), 8629, 8 pp.
[34] Leyva, I., Sendiña-Nadal, I., and Boccaletti, S., “Explosive Synchronization in Mono and Multilayer Networks”, Discrete Contin. Dyn. Syst. Ser. B, 23:5 (2018), 1931–1944 | MR | Zbl
[35] Kachhvah, A. D. and Jalan, S., “Delay Regulated Explosive Synchronization in Multiplex Networks”, New J. Phys., 21:1 (2019), 015006, 14 pp.
[36] Omelchenko, I., Maistrenko, Yu., Hövel, P., and Schöll, E., “Loss of Coherence in Dynamical Networks: Spatial Chaos and Chimera States”, Phys. Rev. Lett., 106:23 (2011), 234102, 4 pp.
[37] Omelchenko, I., Riemenschneider, B., Hövel, Ph., and Schöll, E., “Transition from Spatial Coherence to Incoherence in Coupled Chaotic Systems”, Phys. Rev. E, 85:2 (2012), 026212, 9 pp. | MR
[38] Hagerstrom, A. M., Murphy, Th. E., Roy, R., Hövel, P., Omelchenko, I., and Schöll, E., “Experimental Observation of Chimeras in Coupled-Map Lattices”, Nature Phys., 8 (2012), 658–661
[39] Tinsley, M. R., Nkomo, S., and Showalter, K., “Chimera and Phase-Cluster States in Populations of Coupled Chemical Oscillators”, Nature Phys., 8:9 (2012), 662–665
[40] Larger, L., Penkovsky, B., and Maistrenko, Yu., “Virtual Chimera States for Delayed-Feedback Systems”, Phys. Rev. Lett., 111:5 (2013), 054103, 5 pp.
[41] Martens, E. A., Thutupalli, S., Fourrière, A., and Hallatschek, O., “Chimera States in Mechanical Oscillator Networks”, Proc. Natl. Acad. Sci., 110:26 (2013), 10563–10567
[42] Panaggio, M. J. and Abrams, D. M., “Chimera States on a Flat Torus”, Phys. Rev. Lett., 110:9 (2013), 094102, 5 pp. | MR
[43] Dudkowski, D., Maistrenko, Yu., and Kapitaniak, T., “Different Types of Chimera States: An Interplay between Spatial and Dynamical Chaos”, Phys. Rev. E, 90:3 (2014), 032920, 5 pp.
[44] Maistrenko, Yu. L., Vasylenko, A., Sudakov, O., Levchenko, R., and Maistrenko, V. L., “Cascades of Multiheaded Chimera States for Coupled Phase Oscillators”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 24:8 (2014), 1440014, 17 pp. | MR | Zbl
[45] Yeldesbay, A., Pikovsky, A., and Rosenblum, M., “Chimeralike States in an Ensemble of Globally Coupled Oscillators”, Phys. Rev. Lett., 112:14 (2014), 144103, 5 pp.
[46] Kapitaniak, T., Kuzma, P., Wojewoda, J., Czolczynski, K., and Maistrenko, Yu., “Imperfect Chimera States for Coupled Pendula”, Sci. Rep., 4 (2014), 6379, 4 pp.
[47] Hizanidis, J., Panagakou, E., Omelchenko, I., Schöll, E., Hövel, Ph., and Provata, A., “Chimera States in Population Dynamics: Networks with Fragmented and Hierarchical Connectivities”, Phys. Rev. E, 92:1 (2015), 012915, 11 pp. | MR
[48] Semenova, N., Zakharova, A., Schöll, E., and Anishchenko, V., “Does Hyperbolicity Impede Emergence of Chimera States in Networks of Nonlocally Coupled Chaotic Oscillators?”, Europhys. Lett., 112:4 (2015), 40002, 6 pp. | MR
[49] Olmi, S., Martens, E. A., Thutupalli, S., and Torcini, A., “Intermittent Chaotic Chimeras for Coupled Rotators”, Phys. Rev. E, 92:3 (2015), 030901, 6 pp.
[50] Panaggio, M. J. and Abrams, D. M., “Chimera States on the Surface of a Sphere”, Phys. Rev. E (3), 91:2 (2015), 022909, 10 pp. | MR
[51] Kemeth, F. P., Haugland, S. W., Schmidt, L., Kevrekidis, I. G., and Krischer, K., “A Classification Scheme for Chimera States”, Chaos, 26:9 (2016), 094815, 8 pp.
[52] Vadivasova, T. E., Strelkova, G. I., Bogomolov, S. A., and Anishchenko, V. S., “Correlation Analysis of the Coherence-Incoherence Transition in a Ring of Nonlocally Coupled Logistic Maps”, Chaos, 26:9 (2016), 093108, 9 pp. | MR
[53] Schöll, E., “Synchronization Patterns and Chimera States in Complex Networks: Interplay of Topology and Dynamics”, Eur. Phys. J. Spec. Top., 225:6–7 (2016), 891–919
[54] Ulonska, S., Omelchenko, I., Zakharova, A., and Schöll, E., “Chimera States in Networks of van der Pol Oscillators with Hierarchical Connectivities”, Chaos, 26:9 (2016), 094825, 9 pp. | MR
[55] Semenova, N., Zakharova, A., Anishchenko, V., and Schöll, E., “Coherence-Resonance Chimeras in a Network of Excitable Elements”, Phys. Rev. Lett., 117:1 (2016), 014102, 6 pp.
[56] Semenov, V., Zakharova, A., Maistrenko, Yu., and Schöll, E., “Delayed-Feedback Chimera States: Forced Multiclusters and Stochastic Resonance”, Europhys. Lett., 115:1 (2016), 10005, 6 pp.
[57] Hizanidis, J., Kouvaris, N. E., Zamora-López, G., Díaz-Guilera, A., and Antonopoulos, C. G., “Chimera-Like States in Modular Neural Networks”, Sci. Rep., 6 (2016), 19845, 10 pp.
[58] Majhi, S., Perc, M., and Ghosh, D., “Chimera States in Uncoupled Neurons Induced by a Multilayer Structure”, Sci. Rep., 6 (2016), 39033, 10 pp. | MR
[59] Sawicki, J., Omelchenko, I., Zakharova, A., and Schöll, E., “Chimera States in Complex Networks: Interplay of Fractal Topology and Delay”, Eur. Phys. J. Spec. Top., 226:9 (2017), 1883–1892
[60] Rybalova, E., Semenova, N., Strelkova, G., and Anishchenko, V., “Transition from Complete Synchronization to Spatio-Temporal Chaos in Coupled Chaotic Systems with Nonhyperbolic and Hyperbolic Attractors”, Eur. Phys. J. Spec. Top., 226:9 (2017), 1857–1866
[61] Bogomolov, S., Slepnev, A., Strelkova, G., Schöll, E., and Anishchenko, V., “Mechanisms of Appearance of Amplitude and Phase Chimera States in Ensembles of Nonlocally Coupled Chaotic Systems”, Commun. Nonlinear Sci. Numer. Simul., 43 (2017), 25–36 | MR
[62] Tian, Ch.-H., Zhang, X.-Y., Wang, Zh.-H., and Liu, Z.-H., “Diversity of Chimera-Like Patterns from a Model of $2$D Arrays of Neurons with Nonlocal Coupling”, Front. Phys., 12:3 (2017), 128904, 8 pp.
[63] Schmidt, A., Kasmatis, Th., Hizanidas, J., Provata, A., and Hövel, P., “Chimera Patterns in Two-Dimensional Networks of Coupled Neurons”, Phys. Rev. E, 95:3 (2017), 032224, 13 pp. | MR
[64] Shepelev, I. A., Bukh, A. V., Vadivasova, T. E., Anishchenko, V. S., and Zakharova, A., “Double-Well Chimeras in $2$D Lattice of Chaotic Bistable Elements”, Commun. Nonlinear Sci. Numer. Simul., 54 (2018), 50–61 | MR
[65] Hildebrand, M., Cui, J., Mihaliuk, E., Wang, J., and Showalter, K., “Synchronization of Spatiotemporal Patterns in Locally Coupled Excitable Media”, Phys. Rev. E (3), 68:2 (2003), 026205, 4 pp. | MR
[66] Kuramoto, Y. and Shima, Sh., “Rotating Spirals without Phase Singularity in Reaction-Diffusion Systems. Let's Face Chaos through Nonlinear Dynamics (Maribor, 2002)”, Progr. Theoret. Phys. Suppl., 2003, no. 150, 115–125 | MR
[67] Shima, S. and Kuramoto, Y., “Rotating Spiral Waves with Phase-Randomized Core in Nonlocally Coupled Oscillators”, Phys. Rev. E, 69:3 (2004), 036213, 9 pp.
[68] Martens, E. A., Laing, C. R., and Strogatz, S. H., “Solvable Model of Spiral Wave Chimeras”, Phys. Rev. Lett., 104:4 (2010), 044101, 4 pp.
[69] Tang, X., Yang, T., Epstein, I. R., Liu, Y., Zhao, Y., and Gao, Q., “Novel Type of Chimera Spiral Waves Arising from Decoupling of a Diffusible Component”, J. Chem. Phys., 141:2 (2014), 024110, 7 pp.
[70] Xie, J., Knobloch, E., and Kao, H.-C., “Twisted Chimera States and Multicore Spiral Chimera States on a Two-Dimensional Torus”, Phys. Rev. E, 92:4 (2015), 042921, 16 pp.
[71] Totz, J. F., Rode, J., Tinsley, M. R., Showalter, K., and Engel, H., “Spiral Wave Chimera States in Large Populations of Coupled Chemical Oscillators”, Nat. Phys., 14:3 (2018), 282–285
[72] Laing, C. R., “The Dynamics of Chimera States in Heterogeneous Kuramoto Networks”, Phys. D, 238:16 (2009), 1569–1588 | MR | Zbl
[73] Nkomo, S., Tinsley, M. R., and Showalter, K., “Chimera States in Populations of Nonlocally Coupled Chemical Oscillators”, Phys. Rev. Lett., 110:24 (2013), 244102, 5 pp.
[74] Gu, Ch., St-Yves, G., and Davidsen, J., “Spiral Wave Chimeras in Complex Oscillatory and Chaotic Systems”, Phys. Rev. Lett., 111:13 (2013), 134101, 5 pp.
[75] Kuramoto, Y., Shima, S., Battogtokh, D., and Shiogai, Y., “Mean-Field Theory Revives in Self-Oscillatory Fields with Non-Local Coupling”, Prog. Theor. Phys. Suppl., 161 (2006), 127–143
[76] Li, B.-W. and Dierckx, H., “Spiral Wave Chimeras in Locally Coupled Oscillator Systems”, Phys. Rev. E, 93:2 (2016), 020202, 5 pp. | MR
[77] Weiss, S. and Deegan, R. D., “Weakly and Strongly Coupled Belousov – Zhabotinsky Patterns”, Phys. Rev. E, 95:2 (2017), 022215, 11 pp. | MR
[78] Kundu, S., Majhi, S., Muruganandam, P., and Ghosh, D., “Diffusion Induced Spiral Wave Chimeras in Ecological System”, Eur. Phys. J. Spec. Top., 227 (2018), 983–993
[79] Guo, S., Dai, Q., Cheng, H., Li, H., Xie, F., and Yang, J., “Spiral Wave Chimera in Two-Dimensional Nonlocally Coupled Fitzhugh – Nagumo Systems”, Chaos Solitons Fractals, 114 (2018), 394–399 | MR | Zbl
[80] Bukh, A., Strelkova, G., and Anishchenko, V., “Spiral Wave Patterns in a Two-Dimensional Lattice of Nonlocally Coupled Maps Modeling Neural Activity”, Chaos Solitons Fractals, 120 (2019), 75–82 | MR
[81] Nekorkin, V. I. and Vdovin, L. V., “Map-Based Model of the Neural Activity”, Izv. Vyssh. Uchebn. Zaved. Prikl. Nelin. Dinam., 15:5 (2007), 36–60 (Russian) | Zbl
[82] Bukh, A. V., Schöll, E., and Anishchenko, V. S., “Synchronization of Spiral Wave Patterns in Two-Layer $2$D Lattices of Nonlocally Coupled Discrete Oscillators”, Chaos, 29:5 (2019), 053105, 7 pp. | MR | Zbl
[83] Bukh, A. V., Rybalova, E. V., and Anishchenko, V. S., “Autowave Structures in Two-Dimensional Lattices of Nonlocally Coupled Oscillators”, Izv. Vyssh. Uchebn. Zaved. Prikl. Nelin. Dinam., 28:3 (2020) (to appear)
[84] Pikovsky, A. and Politi, A., Lyapunov Exponents: A Tool to Explore Complex Dynamics, Cambridge Univ. Press, Cambridge, 2016, 295 pp. | MR | Zbl