Features of the Synchronization of Spiral Wave Structures in Interacting Lattices of Nonlocally Coupled Maps
Russian journal of nonlinear dynamics, Tome 16 (2020) no. 2, pp. 243-257.

Voir la notice de l'article provenant de la source Math-Net.Ru

The features of external and mutual synchronization of spiral wave structures including chimera states in the interacting two-dimensional lattices of nonlocally coupled Nekorkin maps are investigated. The cases of diffusive and inertial couplings between the lattices are considered. The lattices model a neuronal activity and represent two-dimensional lattices consisting of $N\times N$ elements with $N=200$. It is shown that the effect of complete synchronization is not achieved in the studied lattices, and only the regime of partial synchronization is realized regardless of the case of coupling between the lattices. It is important to note that the conclusion is applied not only to the regimes of spiral wave chimeras, but also to the regimes of regular spiral waves.
Keywords: synchronization, two-dimensional lattice, spiral wave, spiral wave chimera, inertial and diffusing coupling.
@article{ND_2020_16_2_a1,
     author = {A. V. Bukh and V. S. Anishchenko},
     title = {Features of the {Synchronization} of {Spiral} {Wave} {Structures} in {Interacting} {Lattices} of {Nonlocally} {Coupled} {Maps}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {243--257},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2020_16_2_a1/}
}
TY  - JOUR
AU  - A. V. Bukh
AU  - V. S. Anishchenko
TI  - Features of the Synchronization of Spiral Wave Structures in Interacting Lattices of Nonlocally Coupled Maps
JO  - Russian journal of nonlinear dynamics
PY  - 2020
SP  - 243
EP  - 257
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2020_16_2_a1/
LA  - en
ID  - ND_2020_16_2_a1
ER  - 
%0 Journal Article
%A A. V. Bukh
%A V. S. Anishchenko
%T Features of the Synchronization of Spiral Wave Structures in Interacting Lattices of Nonlocally Coupled Maps
%J Russian journal of nonlinear dynamics
%D 2020
%P 243-257
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2020_16_2_a1/
%G en
%F ND_2020_16_2_a1
A. V. Bukh; V. S. Anishchenko. Features of the Synchronization of Spiral Wave Structures in Interacting Lattices of Nonlocally Coupled Maps. Russian journal of nonlinear dynamics, Tome 16 (2020) no. 2, pp. 243-257. http://geodesic.mathdoc.fr/item/ND_2020_16_2_a1/

[1] Pecora, L. M., Sorrentino, F., Hagerstrom, A. M., Murphy, T. E., and Roy, R., “Cluster Synchronization and Isolated Desynchronization in Complex Networks with Symmetries”, Nat. Commun., 5 (2014), 4079, 23 pp.

[2] Afraimovich, V. S., Nekorkin, V. I., Osipov, G. V., and Shalfeev, V. D., Stability, Structures and Chaos in Nonlinear Synchronization Network, World Sci. Ser. Nonlinear Sci. Ser. A Monogr. Treatises, 6, World Sci., Singapore, 1994, xii+246 pp. | MR

[3] Nekorkin, V. I., Kazantsev, V. B., and Velarde, M. G., “Mutual Synchronization of Two Lattices of Bistable Elements”, Phys. Lett. A, 236:5–6 (1997), 505–512

[4] Nekorkin, V. I., Voronin, M. L., and Velarde, M. G., “Clusters in an Ensemble of Globally Coupled Bistable Oscillators”, Eur. Phys. J. B, 9:3 (1999), 533–543

[5] Belykh, V. N., Belykh, I. V., and Hasler, M., “Hierarchy and Stability of Partially Synchronous Oscillations of Diffusively Coupled Dynamical Systems”, Phys. Rev. E (3), 62:5, part A (2000), 6332–6345 | MR

[6] Belykh, V. N., Belykh, I. V., and Mosekilde, E., “Cluster Synchronization Modes in an Ensemble of Coupled Chaotic Oscillators”, Phys. Rev. E, 63:3 (2001), 036216, 4 pp. | MR

[7] Nekorkin, V. I., Kazantsev, V. B., and Velarde, M. G., “Synchronization in Two-Layer Bistable Coupled Map Lattices”, Phys. D, 151:1 (2001), 1–26 | Zbl

[8] Nekorkin, V. I. and Velarde, M. G., Synergetic Phenomena in Active Lattices: Patterns, Waves, Solitons, Chaos, Springer, Berlin, 2002, xviii+357 pp. | MR | Zbl

[9] Akopov, A., Astakhov, V., Vadivasova, T., Shabunin, A., and Kapitaniak, T., “Frequency Synchronization of Clusters in Coupled Extended Systems”, Phys. Lett. A, 334:2–3 (2005), 169–172 | Zbl

[10] Kuramoto, Y., “Reduction Methods Applied to Nonlocally Coupled Oscillator Systems”, Nonlinear Dynamics and Chaos: Where Do We Go from Here?, eds. J. Hogan et al., Chapman Hall/CRC, Boca Raton, Fla., 2002, 209–227 | MR

[11] Kuramoto, Y. and Battogtokh, D., “Coexistence of Coherence and Incoherence in Nonlocally Coupled Phase Oscillators”, Nonlinear Phenom. Complex Syst., 5:4 (2002), 380–385

[12] Abrams, D. M. and Strogatz, S. H., “Chimera States for Coupled Oscillators”, Phys. Rev. Lett., 93:17 (2004), 174102, 4 pp.

[13] Panaggio, M. J. and Abrams, D. M., “Chimera States: Coexistence of Coherence and Incoherence in Networks of Coupled Oscillators”, Nonlinearity, 28:3 (2015), R67–R87 | MR | Zbl

[14] De Domenico, M., Solé-Ribalta, A., Cozzo, E., Kivelä, M., Moreno, Y., Porter, M. A., Gómez, S., and Arenas, A., “Mathematical Formulation of Multilayer Networks”, Phys. Rev. X, 3:4 (2013), 041022, 15 pp.

[15] Kivelä, M., Arenas, A., Barthelemy, M., Gleeson, J. P., Moreno, Y., and Porter, M. A., “Multilayer Networks”, J. Complex Netw., 2:3 (2014), 203–271

[16] Boccaletti, S., Bianconi, G., Criado, R., del Genio, C. I., Gómez-Gardeñes, J., Romance, M., Sendiña-Nadal, I., Wang, Z., and Zanin, M., “The Structure and Dynamics of Multilayer Networks”, Phys. Rep., 544:1 (2014), 1–122 | MR

[17] Gambuzza, L. V., Frasca, M., and Gómez-Gardeñes, J., “Intra-Layer Synchronization in Multiplex Networks”, Europhys. Lett., 110:2 (2015), 20010, 6 pp.

[18] Ghosh, S., Kumar, A., Zakharova, A., and Jalan, S., “Birth and Death of Chimera: Interplay of Delay and Multiplexing”, Europhys. Lett., 115:6 (2016), 60005, 7 pp. | MR

[19] Sevilla-Escoboza, R., Sendiña-Nadal, I., Leyva, I., Gutiérrez, R., Buldú, J. M., and Boccaletti, S., “Inter-Layer Synchronization in Multiplex Networks of Identical Layers”, Chaos, 26:6 (2016), 065304, 6 pp. | MR | Zbl

[20] Ghosh, S. and Jalan, S., “Emergence of Chimera in Multiplex Network”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 26:7 (2016), 1650120, 10 pp. | MR | Zbl

[21] Maksimenko, V. A., Makarov, V. V., Bera, B. K., Ghosh, D., Dana, S. K., Goremyko, M. V., Frolov, N. S., Koronovskii, A. A., and Hramov, A. E., “Excitation and Suppression of Chimera States by Multiplexing”, Phys. Rev. E, 94:5 (2016), 052205, 9 pp.

[22] Mikhaylenko, M., Ramlow, L., Jalan, S., and Zakharova, A., “Weak Multiplexing in Neural Networks: Switching between Chimera and Solitary States”, Chaos, 29:2 (2019), 023122, 10 pp. | MR | Zbl

[23] Andrzejak, R. G., Ruzzene, G., and Malvestio, I., “Generalized Synchronization between Chimera States”, Chaos, 27:5 (2017), 053114, 6 pp. | MR | Zbl

[24] Singh, A., Ghosh, S., Jalan, S., and Kurths, J., “Synchronization in Delayed Multiplex Networks”, Europhys. Lett., 111:3 (2015), 30010, 6 pp.

[25] Boccaletti, S., Almendral, J. A., Guan, S., Leyva, I., Liu, Z., Sendiña-Nadal, I., Wang, Z., and Zou, Y., “Explosive Transitions in Complex Networks-Structure and Dynamics: Percolation and Synchronization”, Phys. Rep., 660 (2016), 1–94 | MR | Zbl

[26] Bukh, A., Rybalova, E., Semenova, N., Strelkova, G., and Anishchenko, V., “New Type of Chimera and Mutual Synchronization of Spatiotemporal Structures in Two Coupled Ensembles of Nonlocally Interacting Chaotic Maps”, Chaos, 27:11 (2017), 111102, 7 pp. | MR | Zbl

[27] Bukh, A. V., Strelkova, G. I., and Anishchenko, V. S., “Synchronization of Chimera States in Coupled Networks of Nonlinear Chaotic Oscillators”, Rus. J. Nonlin. Dyn., 14:4 (2018), 419–433 | MR

[28] Strelkova, G. I., Vadivasova, T. E., and Anishchenko, V. S., “Synchronization of Chimera States in a Network of Many Unidirectionally Coupled Layers of Discrete Maps”, Regul. Chaotic Dyn., 23:7–8 (2018), 948–960 | MR | Zbl

[29] Rybalova, E. V., Vadivasova, T. E., Strelkova, G. I., Anishchenko, V. S. and Zakharova, A. S., “Forced Synchronization of a Multilayer Heterogeneous Network of Chaotic Maps in the Chimera State Mode”, Chaos, 29:3 (2019), 033134, 9 pp. | MR | Zbl

[30] Leyva, I., Sevilla-Escoboza, R., Sendiña-Nadal, I., Gutiérrez, R., Buldú, J. M. and Boccaletti, S., “Inter-Layer Synchronization in Non-Identical Multi-Layer Networks”, Sci. Rep., 7 (2017), 45475, 9 pp.

[31] Sawicki, J., Omelchenko, I., Zakharova, A., and Schöll, E., “Delay Controls Chimera Relay Synchronization in Multiplex Networks”, Phys. Rev. E, 98:6 (2018), 062224, 9 pp. | MR

[32] Zhang, X., Boccaletti, S., Guan, S., and Liu, Z., “Explosive Synchronization in Adaptive and Multilayer Networks”, Phys. Rev. Lett., 114:3 (2015), 038701, 5 pp.

[33] Leyva, I., Sendiña-Nadal, I., Sevilla-Escoboza, R., Vera-Avila, V. P., Chholak, P., and Boccaletti, S., “Relay Synchronization in Multiplex Networks”, Sci. Rep., 8:1 (2018), 8629, 8 pp.

[34] Leyva, I., Sendiña-Nadal, I., and Boccaletti, S., “Explosive Synchronization in Mono and Multilayer Networks”, Discrete Contin. Dyn. Syst. Ser. B, 23:5 (2018), 1931–1944 | MR | Zbl

[35] Kachhvah, A. D. and Jalan, S., “Delay Regulated Explosive Synchronization in Multiplex Networks”, New J. Phys., 21:1 (2019), 015006, 14 pp.

[36] Omelchenko, I., Maistrenko, Yu., Hövel, P., and Schöll, E., “Loss of Coherence in Dynamical Networks: Spatial Chaos and Chimera States”, Phys. Rev. Lett., 106:23 (2011), 234102, 4 pp.

[37] Omelchenko, I., Riemenschneider, B., Hövel, Ph., and Schöll, E., “Transition from Spatial Coherence to Incoherence in Coupled Chaotic Systems”, Phys. Rev. E, 85:2 (2012), 026212, 9 pp. | MR

[38] Hagerstrom, A. M., Murphy, Th. E., Roy, R., Hövel, P., Omelchenko, I., and Schöll, E., “Experimental Observation of Chimeras in Coupled-Map Lattices”, Nature Phys., 8 (2012), 658–661

[39] Tinsley, M. R., Nkomo, S., and Showalter, K., “Chimera and Phase-Cluster States in Populations of Coupled Chemical Oscillators”, Nature Phys., 8:9 (2012), 662–665

[40] Larger, L., Penkovsky, B., and Maistrenko, Yu., “Virtual Chimera States for Delayed-Feedback Systems”, Phys. Rev. Lett., 111:5 (2013), 054103, 5 pp.

[41] Martens, E. A., Thutupalli, S., Fourrière, A., and Hallatschek, O., “Chimera States in Mechanical Oscillator Networks”, Proc. Natl. Acad. Sci., 110:26 (2013), 10563–10567

[42] Panaggio, M. J. and Abrams, D. M., “Chimera States on a Flat Torus”, Phys. Rev. Lett., 110:9 (2013), 094102, 5 pp. | MR

[43] Dudkowski, D., Maistrenko, Yu., and Kapitaniak, T., “Different Types of Chimera States: An Interplay between Spatial and Dynamical Chaos”, Phys. Rev. E, 90:3 (2014), 032920, 5 pp.

[44] Maistrenko, Yu. L., Vasylenko, A., Sudakov, O., Levchenko, R., and Maistrenko, V. L., “Cascades of Multiheaded Chimera States for Coupled Phase Oscillators”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 24:8 (2014), 1440014, 17 pp. | MR | Zbl

[45] Yeldesbay, A., Pikovsky, A., and Rosenblum, M., “Chimeralike States in an Ensemble of Globally Coupled Oscillators”, Phys. Rev. Lett., 112:14 (2014), 144103, 5 pp.

[46] Kapitaniak, T., Kuzma, P., Wojewoda, J., Czolczynski, K., and Maistrenko, Yu., “Imperfect Chimera States for Coupled Pendula”, Sci. Rep., 4 (2014), 6379, 4 pp.

[47] Hizanidis, J., Panagakou, E., Omelchenko, I., Schöll, E., Hövel, Ph., and Provata, A., “Chimera States in Population Dynamics: Networks with Fragmented and Hierarchical Connectivities”, Phys. Rev. E, 92:1 (2015), 012915, 11 pp. | MR

[48] Semenova, N., Zakharova, A., Schöll, E., and Anishchenko, V., “Does Hyperbolicity Impede Emergence of Chimera States in Networks of Nonlocally Coupled Chaotic Oscillators?”, Europhys. Lett., 112:4 (2015), 40002, 6 pp. | MR

[49] Olmi, S., Martens, E. A., Thutupalli, S., and Torcini, A., “Intermittent Chaotic Chimeras for Coupled Rotators”, Phys. Rev. E, 92:3 (2015), 030901, 6 pp.

[50] Panaggio, M. J. and Abrams, D. M., “Chimera States on the Surface of a Sphere”, Phys. Rev. E (3), 91:2 (2015), 022909, 10 pp. | MR

[51] Kemeth, F. P., Haugland, S. W., Schmidt, L., Kevrekidis, I. G., and Krischer, K., “A Classification Scheme for Chimera States”, Chaos, 26:9 (2016), 094815, 8 pp.

[52] Vadivasova, T. E., Strelkova, G. I., Bogomolov, S. A., and Anishchenko, V. S., “Correlation Analysis of the Coherence-Incoherence Transition in a Ring of Nonlocally Coupled Logistic Maps”, Chaos, 26:9 (2016), 093108, 9 pp. | MR

[53] Schöll, E., “Synchronization Patterns and Chimera States in Complex Networks: Interplay of Topology and Dynamics”, Eur. Phys. J. Spec. Top., 225:6–7 (2016), 891–919

[54] Ulonska, S., Omelchenko, I., Zakharova, A., and Schöll, E., “Chimera States in Networks of van der Pol Oscillators with Hierarchical Connectivities”, Chaos, 26:9 (2016), 094825, 9 pp. | MR

[55] Semenova, N., Zakharova, A., Anishchenko, V., and Schöll, E., “Coherence-Resonance Chimeras in a Network of Excitable Elements”, Phys. Rev. Lett., 117:1 (2016), 014102, 6 pp.

[56] Semenov, V., Zakharova, A., Maistrenko, Yu., and Schöll, E., “Delayed-Feedback Chimera States: Forced Multiclusters and Stochastic Resonance”, Europhys. Lett., 115:1 (2016), 10005, 6 pp.

[57] Hizanidis, J., Kouvaris, N. E., Zamora-López, G., Díaz-Guilera, A., and Antonopoulos, C. G., “Chimera-Like States in Modular Neural Networks”, Sci. Rep., 6 (2016), 19845, 10 pp.

[58] Majhi, S., Perc, M., and Ghosh, D., “Chimera States in Uncoupled Neurons Induced by a Multilayer Structure”, Sci. Rep., 6 (2016), 39033, 10 pp. | MR

[59] Sawicki, J., Omelchenko, I., Zakharova, A., and Schöll, E., “Chimera States in Complex Networks: Interplay of Fractal Topology and Delay”, Eur. Phys. J. Spec. Top., 226:9 (2017), 1883–1892

[60] Rybalova, E., Semenova, N., Strelkova, G., and Anishchenko, V., “Transition from Complete Synchronization to Spatio-Temporal Chaos in Coupled Chaotic Systems with Nonhyperbolic and Hyperbolic Attractors”, Eur. Phys. J. Spec. Top., 226:9 (2017), 1857–1866

[61] Bogomolov, S., Slepnev, A., Strelkova, G., Schöll, E., and Anishchenko, V., “Mechanisms of Appearance of Amplitude and Phase Chimera States in Ensembles of Nonlocally Coupled Chaotic Systems”, Commun. Nonlinear Sci. Numer. Simul., 43 (2017), 25–36 | MR

[62] Tian, Ch.-H., Zhang, X.-Y., Wang, Zh.-H., and Liu, Z.-H., “Diversity of Chimera-Like Patterns from a Model of $2$D Arrays of Neurons with Nonlocal Coupling”, Front. Phys., 12:3 (2017), 128904, 8 pp.

[63] Schmidt, A., Kasmatis, Th., Hizanidas, J., Provata, A., and Hövel, P., “Chimera Patterns in Two-Dimensional Networks of Coupled Neurons”, Phys. Rev. E, 95:3 (2017), 032224, 13 pp. | MR

[64] Shepelev, I. A., Bukh, A. V., Vadivasova, T. E., Anishchenko, V. S., and Zakharova, A., “Double-Well Chimeras in $2$D Lattice of Chaotic Bistable Elements”, Commun. Nonlinear Sci. Numer. Simul., 54 (2018), 50–61 | MR

[65] Hildebrand, M., Cui, J., Mihaliuk, E., Wang, J., and Showalter, K., “Synchronization of Spatiotemporal Patterns in Locally Coupled Excitable Media”, Phys. Rev. E (3), 68:2 (2003), 026205, 4 pp. | MR

[66] Kuramoto, Y. and Shima, Sh., “Rotating Spirals without Phase Singularity in Reaction-Diffusion Systems. Let's Face Chaos through Nonlinear Dynamics (Maribor, 2002)”, Progr. Theoret. Phys. Suppl., 2003, no. 150, 115–125 | MR

[67] Shima, S. and Kuramoto, Y., “Rotating Spiral Waves with Phase-Randomized Core in Nonlocally Coupled Oscillators”, Phys. Rev. E, 69:3 (2004), 036213, 9 pp.

[68] Martens, E. A., Laing, C. R., and Strogatz, S. H., “Solvable Model of Spiral Wave Chimeras”, Phys. Rev. Lett., 104:4 (2010), 044101, 4 pp.

[69] Tang, X., Yang, T., Epstein, I. R., Liu, Y., Zhao, Y., and Gao, Q., “Novel Type of Chimera Spiral Waves Arising from Decoupling of a Diffusible Component”, J. Chem. Phys., 141:2 (2014), 024110, 7 pp.

[70] Xie, J., Knobloch, E., and Kao, H.-C., “Twisted Chimera States and Multicore Spiral Chimera States on a Two-Dimensional Torus”, Phys. Rev. E, 92:4 (2015), 042921, 16 pp.

[71] Totz, J. F., Rode, J., Tinsley, M. R., Showalter, K., and Engel, H., “Spiral Wave Chimera States in Large Populations of Coupled Chemical Oscillators”, Nat. Phys., 14:3 (2018), 282–285

[72] Laing, C. R., “The Dynamics of Chimera States in Heterogeneous Kuramoto Networks”, Phys. D, 238:16 (2009), 1569–1588 | MR | Zbl

[73] Nkomo, S., Tinsley, M. R., and Showalter, K., “Chimera States in Populations of Nonlocally Coupled Chemical Oscillators”, Phys. Rev. Lett., 110:24 (2013), 244102, 5 pp.

[74] Gu, Ch., St-Yves, G., and Davidsen, J., “Spiral Wave Chimeras in Complex Oscillatory and Chaotic Systems”, Phys. Rev. Lett., 111:13 (2013), 134101, 5 pp.

[75] Kuramoto, Y., Shima, S., Battogtokh, D., and Shiogai, Y., “Mean-Field Theory Revives in Self-Oscillatory Fields with Non-Local Coupling”, Prog. Theor. Phys. Suppl., 161 (2006), 127–143

[76] Li, B.-W. and Dierckx, H., “Spiral Wave Chimeras in Locally Coupled Oscillator Systems”, Phys. Rev. E, 93:2 (2016), 020202, 5 pp. | MR

[77] Weiss, S. and Deegan, R. D., “Weakly and Strongly Coupled Belousov – Zhabotinsky Patterns”, Phys. Rev. E, 95:2 (2017), 022215, 11 pp. | MR

[78] Kundu, S., Majhi, S., Muruganandam, P., and Ghosh, D., “Diffusion Induced Spiral Wave Chimeras in Ecological System”, Eur. Phys. J. Spec. Top., 227 (2018), 983–993

[79] Guo, S., Dai, Q., Cheng, H., Li, H., Xie, F., and Yang, J., “Spiral Wave Chimera in Two-Dimensional Nonlocally Coupled Fitzhugh – Nagumo Systems”, Chaos Solitons Fractals, 114 (2018), 394–399 | MR | Zbl

[80] Bukh, A., Strelkova, G., and Anishchenko, V., “Spiral Wave Patterns in a Two-Dimensional Lattice of Nonlocally Coupled Maps Modeling Neural Activity”, Chaos Solitons Fractals, 120 (2019), 75–82 | MR

[81] Nekorkin, V. I. and Vdovin, L. V., “Map-Based Model of the Neural Activity”, Izv. Vyssh. Uchebn. Zaved. Prikl. Nelin. Dinam., 15:5 (2007), 36–60 (Russian) | Zbl

[82] Bukh, A. V., Schöll, E., and Anishchenko, V. S., “Synchronization of Spiral Wave Patterns in Two-Layer $2$D Lattices of Nonlocally Coupled Discrete Oscillators”, Chaos, 29:5 (2019), 053105, 7 pp. | MR | Zbl

[83] Bukh, A. V., Rybalova, E. V., and Anishchenko, V. S., “Autowave Structures in Two-Dimensional Lattices of Nonlocally Coupled Oscillators”, Izv. Vyssh. Uchebn. Zaved. Prikl. Nelin. Dinam., 28:3 (2020) (to appear)

[84] Pikovsky, A. and Politi, A., Lyapunov Exponents: A Tool to Explore Complex Dynamics, Cambridge Univ. Press, Cambridge, 2016, 295 pp. | MR | Zbl