Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2020_16_2_a0, author = {H. M. Yehia and A. M. Hussein}, title = {New {Families} of {Integrable} {Two-Dimensional} {Systems} with {Quartic} {Second} {Integrals}}, journal = {Russian journal of nonlinear dynamics}, pages = {211--242}, publisher = {mathdoc}, volume = {16}, number = {2}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2020_16_2_a0/} }
TY - JOUR AU - H. M. Yehia AU - A. M. Hussein TI - New Families of Integrable Two-Dimensional Systems with Quartic Second Integrals JO - Russian journal of nonlinear dynamics PY - 2020 SP - 211 EP - 242 VL - 16 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2020_16_2_a0/ LA - en ID - ND_2020_16_2_a0 ER -
H. M. Yehia; A. M. Hussein. New Families of Integrable Two-Dimensional Systems with Quartic Second Integrals. Russian journal of nonlinear dynamics, Tome 16 (2020) no. 2, pp. 211-242. http://geodesic.mathdoc.fr/item/ND_2020_16_2_a0/
[1] Hietarinta, J., “Direct Methods for the Search of the Second Invariant”, Phys. Rep., 147:2 (1987), 87–154 | MR
[2] Sen, T., “Integrable Potentials with Cubic and Quartic Invariants”, Phys. Lett. A, 122:2 (1987), 100–106 | MR
[3] Sen, T., “A Class of Integrable Potentials”, J. Math. Phys., 28:12 (1987), 2841–2850 | MR | Zbl
[4] Karlovini, M. and Rosquist, K., “A Unified Treatment of Cubic Invariants at Fixed and Arbitrary Energy”, J. Math. Phys., 41:1 (2000), 370–384 | MR | Zbl
[5] Karlovini, M., Pucacco, G., Rosquist, K., and Samuelsson, L., “A Unified Treatment of Quartic Invariants at Fixed and Arbitrary Energy”, J. Math. Phys., 43:8 (2002), 4041–4059 | MR | Zbl
[6] Yehia, H. M., “On the Integrability of Certain Problems in Particle and Rigid Body Dynamics”, J. Méc. Théor. Appl., 5:1 (1986), 55–71 | MR | Zbl
[7] Yehia, H. M., “Generalized Natural Mechanical Systems of Two Degrees of Freedom with Quartic Integrals”, J. Phys. A, 25:1 (1992), 197–221 | MR | Zbl
[8] Yehia, H. M., “Atlas of Two-Dimensional Irreversible Conservative Lagrangian Mechanical Systems with a Second Quadratic Integral”, J. Math. Phys., 48:8 (2007), 082902, 32 pp. | MR | Zbl
[9] Yehia, H. M., “On Certain Two-Dimensional Conservative Mechanical Systems with Cubic Second Integral”, J. Phys. A, 35:44 (2002), 9469–9487 | MR | Zbl
[10] Yehia, H. M., “Two-Dimensional Conservative Mechanical Systems with Quartic Second Integral”, Regul. Chaotic Dyn., 11:1 (2006), 103–122 | MR | Zbl
[11] Yehia, H. M., “The Master Integrable Two-Dimensional System with a Quartic Second Integral”, J. Phys. A, 39:20 (2006), 5807–5824 | MR | Zbl
[12] Yehia, H. M., “A New 2D Integrable System with a Quartic Second Invariant”, J. Phys. A, 45:39 (2012), 395209, 12 pp. | MR | Zbl
[13] Galajinsky, A. and Lechtenfeld, O., “On Two-Dimensional Integrable Models with a Cubic or Quartic Integral of Motion”, J. High Energy Phys., 2013, no. 9, 113, 11 pp. | MR | Zbl
[14] Kowalevski, S., “Sur le probléme de la rotation d'un corps solide autour d'un point fixe”, Acta Math., 12 (1889), 177–232 | MR
[15] Chaplygin, S. A., “A New Particular Solution of the Problem of the Motion of a Rigid Body in a Liquid”, Trudy Otdel. Fiz. Nauk Obsh. Liub. Est., 11:2 (1903), 7–10 (Russian)
[16] Yehia, H. M. and Elmandouh, A. A., “A New Integrable Problem with a Quartic Integral in the Dynamics of a Rigid Body”, J. Phys. A, 46:14 (2013), 142001, 8 pp. | MR | Zbl
[17] Yehia, H. M., “Completely Integrable 2D Lagrangian Systems and Related Integrable Geodesic Flows on Various Manifolds”, J. Phys. A, 46:32 (2013), 325203, 22 pp. | MR | Zbl
[18] Ramani, A., Grammaticos, B., and Bountis, T., “The Painlevé Property and Singularity Analysis of Integrable and Non-Integrable Systems”, Phys. Rep., 180:3 (1989), 159–245 | MR
[19] Holt, C. R., “Construction of New Integrable Hamiltonians in Two Degrees of Freedom”, J. Math. Phys., 23:6 (1982), 1037–1046 | MR | Zbl
[20] Grammaticos, B., Dorizzi, B., and Ramani, A., “Hamiltonians with High-Order Integrals and the “Weak-Painlevé” Concept”, J. Math. Phys., 25:12 (1984), 3470–3473 | MR | Zbl
[21] Hietarinta, J., “Integrable Families of Hénon – Heiles-Type Hamiltonians and a New Duality”, Phys. Rev. A, 28:6 (1983), 3670–3672
[22] Hietarinta, J., “Classical versus Quantum Integrability”, J. Math. Phys., 25:6 (1984), 1833–1840 | MR
[23] Grammaticos, B., Dorizzi, B., and Padjen, R., “Painlevé Property and Integrals of Motion for the Hénon – Heiles System”, Phys. Lett. A, 89:3 (1982), 111–113 | MR
[24] Hall, L. S., “A Theory of Exact and Approximate Configurational Invariants”, Phys. D, 8:1–2 (1983), 90–116 | MR | Zbl
[25] Gradshtein, I. S. and Ryzhik, I. M., Table of Integrals, Series, and Products, 7th ed., Acad. Press, Amsterdam, 2007, 1200 pp. | MR | Zbl
[26] Mat. Sb., 185:12 (1994), 49–64 (Russian) | MR | Zbl
[27] Mat. Sb., 189:10 (1998), 5–32 (Russian) | MR | Zbl
[28] Bolsinov, A. V., “Integrable Geodesic Flows on Riemannian Manifolds”, J. Math. Sci. (N. Y.), 123:4 (2004), 4185–4197 | MR | Zbl
[29] Bialy, M. and Mironov, A. E., “Integrable Geodesic Flows on $2$-Torus: Formal Solutions and Variational Principle”, J. Geom. Phys., 87, 39–47 | MR | Zbl