New Families of Integrable Two-Dimensional Systems with Quartic Second Integrals
Russian journal of nonlinear dynamics, Tome 16 (2020) no. 2, pp. 211-242.

Voir la notice de l'article provenant de la source Math-Net.Ru

The method introduced in [11] and [12] is extended to construct new families of severalparameter integrable systems, which admit a complementary integral quartic in the velocities. A list of 14 systems is obtained, of which 12 are new. Each of the new systems involves a number of parameters ranging from 7 up to 16 parameters entering into its structures. A detailed preliminary analysis of certain special cases of one of the new systems is performed, aimed at obtaining some global results. We point out twelve combinations of conditions on the parameters which characterize integrable dynamics on Riemannian manifolds as configuration spaces. Very special 7 versions of the 12 cases are interpreted as new integrable motions with a quartic integral in the Poincaré half-plane. A byproduct of the process of solution is the construction of 12 Riemannian metrics whose geodesic flow is integrable with a quartic second integral.
Keywords: integrable systems, quartic second integrals, Poincaré half-plane.
@article{ND_2020_16_2_a0,
     author = {H. M. Yehia and A. M. Hussein},
     title = {New {Families} of {Integrable} {Two-Dimensional} {Systems} with {Quartic} {Second} {Integrals}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {211--242},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2020_16_2_a0/}
}
TY  - JOUR
AU  - H. M. Yehia
AU  - A. M. Hussein
TI  - New Families of Integrable Two-Dimensional Systems with Quartic Second Integrals
JO  - Russian journal of nonlinear dynamics
PY  - 2020
SP  - 211
EP  - 242
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2020_16_2_a0/
LA  - en
ID  - ND_2020_16_2_a0
ER  - 
%0 Journal Article
%A H. M. Yehia
%A A. M. Hussein
%T New Families of Integrable Two-Dimensional Systems with Quartic Second Integrals
%J Russian journal of nonlinear dynamics
%D 2020
%P 211-242
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2020_16_2_a0/
%G en
%F ND_2020_16_2_a0
H. M. Yehia; A. M. Hussein. New Families of Integrable Two-Dimensional Systems with Quartic Second Integrals. Russian journal of nonlinear dynamics, Tome 16 (2020) no. 2, pp. 211-242. http://geodesic.mathdoc.fr/item/ND_2020_16_2_a0/

[1] Hietarinta, J., “Direct Methods for the Search of the Second Invariant”, Phys. Rep., 147:2 (1987), 87–154 | MR

[2] Sen, T., “Integrable Potentials with Cubic and Quartic Invariants”, Phys. Lett. A, 122:2 (1987), 100–106 | MR

[3] Sen, T., “A Class of Integrable Potentials”, J. Math. Phys., 28:12 (1987), 2841–2850 | MR | Zbl

[4] Karlovini, M. and Rosquist, K., “A Unified Treatment of Cubic Invariants at Fixed and Arbitrary Energy”, J. Math. Phys., 41:1 (2000), 370–384 | MR | Zbl

[5] Karlovini, M., Pucacco, G., Rosquist, K., and Samuelsson, L., “A Unified Treatment of Quartic Invariants at Fixed and Arbitrary Energy”, J. Math. Phys., 43:8 (2002), 4041–4059 | MR | Zbl

[6] Yehia, H. M., “On the Integrability of Certain Problems in Particle and Rigid Body Dynamics”, J. Méc. Théor. Appl., 5:1 (1986), 55–71 | MR | Zbl

[7] Yehia, H. M., “Generalized Natural Mechanical Systems of Two Degrees of Freedom with Quartic Integrals”, J. Phys. A, 25:1 (1992), 197–221 | MR | Zbl

[8] Yehia, H. M., “Atlas of Two-Dimensional Irreversible Conservative Lagrangian Mechanical Systems with a Second Quadratic Integral”, J. Math. Phys., 48:8 (2007), 082902, 32 pp. | MR | Zbl

[9] Yehia, H. M., “On Certain Two-Dimensional Conservative Mechanical Systems with Cubic Second Integral”, J. Phys. A, 35:44 (2002), 9469–9487 | MR | Zbl

[10] Yehia, H. M., “Two-Dimensional Conservative Mechanical Systems with Quartic Second Integral”, Regul. Chaotic Dyn., 11:1 (2006), 103–122 | MR | Zbl

[11] Yehia, H. M., “The Master Integrable Two-Dimensional System with a Quartic Second Integral”, J. Phys. A, 39:20 (2006), 5807–5824 | MR | Zbl

[12] Yehia, H. M., “A New 2D Integrable System with a Quartic Second Invariant”, J. Phys. A, 45:39 (2012), 395209, 12 pp. | MR | Zbl

[13] Galajinsky, A. and Lechtenfeld, O., “On Two-Dimensional Integrable Models with a Cubic or Quartic Integral of Motion”, J. High Energy Phys., 2013, no. 9, 113, 11 pp. | MR | Zbl

[14] Kowalevski, S., “Sur le probléme de la rotation d'un corps solide autour d'un point fixe”, Acta Math., 12 (1889), 177–232 | MR

[15] Chaplygin, S. A., “A New Particular Solution of the Problem of the Motion of a Rigid Body in a Liquid”, Trudy Otdel. Fiz. Nauk Obsh. Liub. Est., 11:2 (1903), 7–10 (Russian)

[16] Yehia, H. M. and Elmandouh, A. A., “A New Integrable Problem with a Quartic Integral in the Dynamics of a Rigid Body”, J. Phys. A, 46:14 (2013), 142001, 8 pp. | MR | Zbl

[17] Yehia, H. M., “Completely Integrable 2D Lagrangian Systems and Related Integrable Geodesic Flows on Various Manifolds”, J. Phys. A, 46:32 (2013), 325203, 22 pp. | MR | Zbl

[18] Ramani, A., Grammaticos, B., and Bountis, T., “The Painlevé Property and Singularity Analysis of Integrable and Non-Integrable Systems”, Phys. Rep., 180:3 (1989), 159–245 | MR

[19] Holt, C. R., “Construction of New Integrable Hamiltonians in Two Degrees of Freedom”, J. Math. Phys., 23:6 (1982), 1037–1046 | MR | Zbl

[20] Grammaticos, B., Dorizzi, B., and Ramani, A., “Hamiltonians with High-Order Integrals and the “Weak-Painlevé” Concept”, J. Math. Phys., 25:12 (1984), 3470–3473 | MR | Zbl

[21] Hietarinta, J., “Integrable Families of Hénon – Heiles-Type Hamiltonians and a New Duality”, Phys. Rev. A, 28:6 (1983), 3670–3672

[22] Hietarinta, J., “Classical versus Quantum Integrability”, J. Math. Phys., 25:6 (1984), 1833–1840 | MR

[23] Grammaticos, B., Dorizzi, B., and Padjen, R., “Painlevé Property and Integrals of Motion for the Hénon – Heiles System”, Phys. Lett. A, 89:3 (1982), 111–113 | MR

[24] Hall, L. S., “A Theory of Exact and Approximate Configurational Invariants”, Phys. D, 8:1–2 (1983), 90–116 | MR | Zbl

[25] Gradshtein, I. S. and Ryzhik, I. M., Table of Integrals, Series, and Products, 7th ed., Acad. Press, Amsterdam, 2007, 1200 pp. | MR | Zbl

[26] Mat. Sb., 185:12 (1994), 49–64 (Russian) | MR | Zbl

[27] Mat. Sb., 189:10 (1998), 5–32 (Russian) | MR | Zbl

[28] Bolsinov, A. V., “Integrable Geodesic Flows on Riemannian Manifolds”, J. Math. Sci. (N. Y.), 123:4 (2004), 4185–4197 | MR | Zbl

[29] Bialy, M. and Mironov, A. E., “Integrable Geodesic Flows on $2$-Torus: Formal Solutions and Variational Principle”, J. Geom. Phys., 87, 39–47 | MR | Zbl