Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2020_16_1_a4, author = {S. P. Kuznetsov and V. P. Kruglov and Yu. V. Sedova}, title = {Mechanical {Systems} with {Hyperbolic} {Chaotic} {Attractors} {Based} on {Froude} {Pendulums}}, journal = {Russian journal of nonlinear dynamics}, pages = {51--58}, publisher = {mathdoc}, volume = {16}, number = {1}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2020_16_1_a4/} }
TY - JOUR AU - S. P. Kuznetsov AU - V. P. Kruglov AU - Yu. V. Sedova TI - Mechanical Systems with Hyperbolic Chaotic Attractors Based on Froude Pendulums JO - Russian journal of nonlinear dynamics PY - 2020 SP - 51 EP - 58 VL - 16 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2020_16_1_a4/ LA - en ID - ND_2020_16_1_a4 ER -
%0 Journal Article %A S. P. Kuznetsov %A V. P. Kruglov %A Yu. V. Sedova %T Mechanical Systems with Hyperbolic Chaotic Attractors Based on Froude Pendulums %J Russian journal of nonlinear dynamics %D 2020 %P 51-58 %V 16 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2020_16_1_a4/ %G en %F ND_2020_16_1_a4
S. P. Kuznetsov; V. P. Kruglov; Yu. V. Sedova. Mechanical Systems with Hyperbolic Chaotic Attractors Based on Froude Pendulums. Russian journal of nonlinear dynamics, Tome 16 (2020) no. 1, pp. 51-58. http://geodesic.mathdoc.fr/item/ND_2020_16_1_a4/
[1] Shilnikov, L., “Mathematical Problems of Nonlinear Dynamics: A Tutorial”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 7:9 (1997), 1953–2001 | DOI | MR | Zbl
[2] Smale, S., “Differentiable Dynamical Systems”, Bull. Amer. Math. Soc., 73:6 (1967), 747–817 | DOI | MR | Zbl
[3] Williams, R., “Expanding Attractors”, Publ. Math. Inst. Hautes Études Sci., 43 (1974), 169–203 | DOI | MR
[4] Kuznetsov, S. P. and Kruglov, V. P., “Hyperbolic Chaos in a System of Two Froude Pendulums with Alternating Periodic Braking”, Commun. Nonlinear Sci. Numer. Simul., 67 (2019), 152–161 | DOI | MR
[5] Kuznetsov, S. P. and Sedova, Yu. V., “Robust Hyperbolic Chaos in Froude Pendulum with Delayed Feedback and Periodic Braking”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 29:12 (2019), 1930035 | DOI | MR | Zbl
[6] Kuptsov, P. V., “Fast Numerical Test of Hyperbolic Chaos”, Phys. Rev. E, 85:1 (2012), 015203, 4 pp. | DOI | MR
[7] Kuptsov, P. V. and Kuznetsov, S. P., “Numerical Test for Hyperbolicity of Chaotic Dynamics in Time-Delay Systems”, Phys. Rev. E, 94:1 (2016), 010201, 6 pp. | DOI | MR