Mechanical Systems with Hyperbolic Chaotic Attractors Based on Froude Pendulums
Russian journal of nonlinear dynamics, Tome 16 (2020) no. 1, pp. 51-58.

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss two mechanical systems with hyperbolic chaotic attractors of Smale – Williams type. Both models are based on Froude pendulums. The first system is composed of two coupled Froude pendulums with alternating periodic braking. The second system is Froude pendulum with time-delayed feedback and periodic braking. We demonstrate by means of numerical simulations that the proposed models have chaotic attractors of Smale – Williams type. We specify regions of parameter values at which the dynamics corresponds to the Smale – Williams solenoid. We check numerically the hyperbolicity of the attractors.
Keywords: hyperbolic chaotic attractors, Smale – Williams solenoid
Mots-clés : Bernoulli map.
@article{ND_2020_16_1_a4,
     author = {S. P. Kuznetsov and V. P. Kruglov and Yu. V. Sedova},
     title = {Mechanical {Systems} with {Hyperbolic} {Chaotic} {Attractors} {Based} on {Froude} {Pendulums}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {51--58},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2020_16_1_a4/}
}
TY  - JOUR
AU  - S. P. Kuznetsov
AU  - V. P. Kruglov
AU  - Yu. V. Sedova
TI  - Mechanical Systems with Hyperbolic Chaotic Attractors Based on Froude Pendulums
JO  - Russian journal of nonlinear dynamics
PY  - 2020
SP  - 51
EP  - 58
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2020_16_1_a4/
LA  - en
ID  - ND_2020_16_1_a4
ER  - 
%0 Journal Article
%A S. P. Kuznetsov
%A V. P. Kruglov
%A Yu. V. Sedova
%T Mechanical Systems with Hyperbolic Chaotic Attractors Based on Froude Pendulums
%J Russian journal of nonlinear dynamics
%D 2020
%P 51-58
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2020_16_1_a4/
%G en
%F ND_2020_16_1_a4
S. P. Kuznetsov; V. P. Kruglov; Yu. V. Sedova. Mechanical Systems with Hyperbolic Chaotic Attractors Based on Froude Pendulums. Russian journal of nonlinear dynamics, Tome 16 (2020) no. 1, pp. 51-58. http://geodesic.mathdoc.fr/item/ND_2020_16_1_a4/

[1] Shilnikov, L., “Mathematical Problems of Nonlinear Dynamics: A Tutorial”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 7:9 (1997), 1953–2001 | DOI | MR | Zbl

[2] Smale, S., “Differentiable Dynamical Systems”, Bull. Amer. Math. Soc., 73:6 (1967), 747–817 | DOI | MR | Zbl

[3] Williams, R., “Expanding Attractors”, Publ. Math. Inst. Hautes Études Sci., 43 (1974), 169–203 | DOI | MR

[4] Kuznetsov, S. P. and Kruglov, V. P., “Hyperbolic Chaos in a System of Two Froude Pendulums with Alternating Periodic Braking”, Commun. Nonlinear Sci. Numer. Simul., 67 (2019), 152–161 | DOI | MR

[5] Kuznetsov, S. P. and Sedova, Yu. V., “Robust Hyperbolic Chaos in Froude Pendulum with Delayed Feedback and Periodic Braking”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 29:12 (2019), 1930035 | DOI | MR | Zbl

[6] Kuptsov, P. V., “Fast Numerical Test of Hyperbolic Chaos”, Phys. Rev. E, 85:1 (2012), 015203, 4 pp. | DOI | MR

[7] Kuptsov, P. V. and Kuznetsov, S. P., “Numerical Test for Hyperbolicity of Chaotic Dynamics in Time-Delay Systems”, Phys. Rev. E, 94:1 (2016), 010201, 6 pp. | DOI | MR