Estimation of Instabilities under the Joint Action of Laser Radiation and a Magnetic Field on a Plasma
Russian journal of nonlinear dynamics, Tome 16 (2020) no. 1, pp. 45-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

One of the main obstacles to the uniform laser compression of a fusion target is the plasma formation instability (the Rayleigh –Taylor instability is the most dangerous). In all the schemes considered, the impulsive character is important. In this case, not all possible plasma instabilities are dangerous, but only those that most rapidly increase with time (for example, Rayleigh – Taylor instability).
Keywords: laser, magnetic field, mathematical model, plasma target.
@article{ND_2020_16_1_a3,
     author = {V. V. Kuzenov and V. V. Shumaev},
     title = {Estimation of {Instabilities} under the {Joint} {Action} of {Laser} {Radiation} and a {Magnetic} {Field} on a {Plasma}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {45--50},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2020_16_1_a3/}
}
TY  - JOUR
AU  - V. V. Kuzenov
AU  - V. V. Shumaev
TI  - Estimation of Instabilities under the Joint Action of Laser Radiation and a Magnetic Field on a Plasma
JO  - Russian journal of nonlinear dynamics
PY  - 2020
SP  - 45
EP  - 50
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2020_16_1_a3/
LA  - en
ID  - ND_2020_16_1_a3
ER  - 
%0 Journal Article
%A V. V. Kuzenov
%A V. V. Shumaev
%T Estimation of Instabilities under the Joint Action of Laser Radiation and a Magnetic Field on a Plasma
%J Russian journal of nonlinear dynamics
%D 2020
%P 45-50
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2020_16_1_a3/
%G en
%F ND_2020_16_1_a3
V. V. Kuzenov; V. V. Shumaev. Estimation of Instabilities under the Joint Action of Laser Radiation and a Magnetic Field on a Plasma. Russian journal of nonlinear dynamics, Tome 16 (2020) no. 1, pp. 45-50. http://geodesic.mathdoc.fr/item/ND_2020_16_1_a3/

[1] Teplofizika Vysokikh Temperatur, 54:3 (2016), 430–452 (Russian) | DOI

[2] Ryzhkov, S. V., Chirkov, A. Yu., and Ivanov, A. A., “Analysis of the Compression and Heating of Magnetized Plasma Targets for Magneto-Inertial Fusion”, Fusion Sci. Technol., 63:1T (2013), 135–138 | DOI

[3] Teplofizika Vysokikh Temperatur, 55:2 (2017), 291–316 (Russian) | DOI

[4] Kuzenov, V. V., Polozova, T. N., and Ryzhkov, S. V., “Numerical Simulation of Pulsed Plasma Thruster with a Preionization Helicon Discharge”, Probl. Atom. Sci. Tech., 4(98) (2015), 49–52

[5] Teplofizika Vysokikh Temperatur, 53:2 (2015), 243–249 (Russian) | DOI

[6] Kuzenov, V. V., Ryzhkov, S. V., and Shumaev, V. V., “Numerical Thermodynamic Analysis of Alloys for Plasma Electronics and Advanced Technologies”, Probl. Atom. Sci. Tech., 4(98) (2015), 53–56

[7] Kuzenov, V. V., Ryzhkov, S. V., and Shumaev, V. V., “Application of Thomas – Fermi Model to Evaluation of Thermodynamic Properties of Magnetized Plasma”, Probl. Atom. Sci. Tech., 1(95) (2015), 97–99

[8] Ryzhkov, S. V. and Kuzenov, V. V., “Analysis of the Ideal Gas Flow over Body of Basic Geometrical Shape”, Int. J. Heat Mass Transf., 132 (2019), 587–592 | DOI

[9] Kuzenov, V. V., Ryzhkov, S. V., Gavrilova, A. Yu., and Skorokhod, E. P., “Computer Simulation of Plasmadynamic Processes in Capillary Discharges”, High Temp. Mater. Process., 18:1–2 (2014), 119–130 | DOI

[10] Kuzenov, V. V. and Ryzhkov, S. V., “Numerical Modeling of Laser Target Compression in an External Magnetic Field”, Math. Models Comput. Simul., 10:2 (2018), 255–264 | DOI | MR

[11] Kuzenov, V. V. and Ryzhkov, S. V., “Approximate Method for Calculating Convective Heat Flux on the Surface of Bodies of Simple Geometric Shapes”, J. Phys. Conf. Ser., 815 (2017), 012024, 8 pp. | DOI

[12] Ryzhkov, S. V. and Kuzenov, V. V., “New Realization Method for Calculating Convective Heat Transfer near the Hypersonic Aircraft Surface”, Z. Angew. Math. Phys., 70:2 (2019), 46, 9 pp. | DOI | MR | Zbl

[13] Physics of High Energy Density, Proceedings of the International School of Physics “Enrico Fermico”, 48, eds. P. Caldirola, H. E. Knoepfel, Acad. Press, New York, 1971, 418 pp.

[14] Knoepfel, H., Pulsed High Magnetic Fields, North-Holland, Amsterdam, 1970, 372 pp.

[15] Kuzenov, V. V. and Ryzhkov, S. V., “Radiation-Hydrodynamic Modeling of the Contact Boundary of the Plasma Target Placed in an External Magnetic Field”, Prikl. Fiz., 2014, no. 3, 26–30 (Russian)

[16] Kuzenov, V. V. and Ryzhkov, S. V., “Individual Elements of the Physical and Mathematical Model for a Helicon Discharge”, Prikl. Fiz., 2015, no. 2, 37–44 (Russian)

[17] Dimitrienko, Yu., Koryakov, M., and Zakharov, A., “Application of Finite Difference TVD Methods in Hypersonic Aerodynamics”, Finite Difference Methods,Theory and Applications (FDM 2014), Lecture Notes in Comput. Sci., 9045, eds. I. Dimov, I. Farago, L. Vulkov, Springer, Cham, 2015, 161–168 | DOI | MR | Zbl

[18] Ryzhkov, S. V., Khvesyuk, V. I., and Ivanov, A. A., “Progress in an Alternate Confinement System Called a FRC”, Fusion Sci. Technol., 43:1T (2003), 304–306 | DOI

[19] Potekhin, A. Yu. and Chabrier, G., “Equation of State for Magnetized Coulomb Plasmas”, Astron. Astrophys., 550 (2013), A43, 16 pp. | DOI

[20] Chirkov, A. Yu. and Ryzhkov, S. V., “The Plasma Jet/Laser Driven Compression of Compact Plasmoids to Fusion Conditions”, J. Fusion Energ., 31 (2012), 7–12 | DOI

[21] Kuzenov, V. V. and Ryzhkov, S. V., “Numerical Simulation of the Effect of Laser Radiation on Matter in an External Magnetic Field”, J. Phys. Conf. Ser., 830:1 (2017), 012124, 8 pp. | DOI